Newsletter French November/January 2020


Logo ICRANet Logo CAPES Logo Erasmus Mundus Logo FAPERJ Logo MAE

ICRANet Newsletter



Bulletin ICRANet
Novembre - Décembre 2019 - Janvier 2020



RÉSUMÉ
1. Communiqué de presse ICRANet "A New Paradigm of Black Hole Physics Leads to a New Quantum in Fundamental Physical Laws"
2. Le centre ICRANet en Arménie a obtenu des espaces à titre gratuit en Marshal Baghramyan Avenue, Erevan
3. Renouvellement de l'accord de collaboration entre l'ICRANet et le CNR, 23 Décembre 2019
4. Stakeholders' conference on the future of the Marie Sklodowska-Curie Actions, Brussels, 3 Décembre 2019
5. Visite de l'artiste Michelangelo Pistoletto, ICRANet Pescara, 14-15 Janvier 2020
6. "Mercurio in sole visu". Deuxième manifestation du projet "Alternanza scuola-lavoro" avec le Lycée scientifique G. Galilei de Pescara auprès du centre ICRANet, 11 Novembre 2019
7. "Betelgeuse dimming: the state of the star", workshop ICRANet Pescara, 17 Janvier 2020
8. Intervention du Prof. Ruffini à l'événement "Science by Night", Lycée scientifique G. Galilei de Pescara, 18 Janvier 2020
9. Visite du Préfet de Pescara et exposition "Einstein, Fermi, Heisenberg et la naissance de l'Astrophysique relativiste", ICRANet Pescara, 25 Janvier-29 Février 2020
10. Visites scientifiques au centre ICRANet de Pescara
11. Séminaires au centre ICRANet de Pescara
12. Le Prof. Ruffini décerné le prix Rosone d'oro 2019, Pianella, Italie, 21 Décembre 2019
13. Meetings à venir
14. Publications récentes



1. Communiqué de presse ICRANet "A New Paradigm of Black Hole Physics Leads to a New Quantum in Fundamental Physical Laws"

A change of paradigm in black hole physics, leading to new perspectives in the role of the quantum in fundamental laws of physics, is finally reaching its most cogent confirmation by the introduction of the "inner engine" originating the GeV emission of GRB 130427A. This is explained in the new article [1], published today (22 November 2019) in The Astrophysical Journal, co-authored by R. Ruffini, R. Moradi, J. A. Rueda, L. Becerra, C. L. Bianco, C. Cherubini, Y. C. Chen, M. Karlica, N. Sahakyan, Y. Wang, and S. S. Xue. Remo Ruffini, Director of ICRANet, recalls that this a final step of a 49 years effort. In our joint article of 1971 with John Archibald Wheeler, "Introducing the black hole" [2], we pointed out how the concept of "continuous gravitational contraction", conceived by Oppenheimer and Snyder [3] for the Schwarzschild geometry, had profound modifications by introducing the Kerr metric describing the gravitational field of a spinning mass [4]. We there introduced an effective potential technique to address the particle trajectories around the Kerr black hole (BH), see Problem 12.2 in [5], that led to: 1) the determination of the last stable orbits around the Kerr BH amply applied to the study of gravitational accretion in a vast number of processes, from active galactic nuclei (AGNs), to accretion disk around the BH, to the emission of gravitational waves, see ch. 33 and 34 in [6]; 2) the mass-energy formula of a Kerr BH [7], of a Kerr-Newman BH [8] later confirmed by [9] (see Figure 1) and 3) the progressive change of the Oppenheimer paradigm, based on a Schwarzschild "dead" BH, to the new paradigm envisaging the Kerr "alive" BH indicating the BH as the "largest storehouse of energy in the Universe" [10]. Precisely, the "inner engine" extracting the rotational Christodoulou-Hawking-Ruffini energy of the Kerr BH, has been identified today, after 49 years, in GRB 130427A [1] and has been already successfully extended to GRB 190114C [11]. These results have been made possible thanks to the outstanding data of the GBM and LAT detectors of the Fermi satellite, the BAT and XRT detectors of the Neil Gehrels Swift Observatory, and the optical and the higher energy detectors on the ground.

1
Fig. 1. Prof. Remo Ruffini and Prof. Roy Kerr with his wife at Prof. Stephen Hawking’s home in Cambridge for dinner on 20 June 2017, celebrating the Christodoulou-Hawking-Ruffini mass-energy formula of the Kerr metric.

Laura Beccera, who has been collaborating with the group of Los Alamos National Laboratory (LANL) in the simulation of these GRBs, notices that this "inner engine" naturally forms in the binary-driven hypernova (BdHN) scenario of GRBs [12-14] (see Figure 2). Rahim Moradi recalls: an extremely efficient electrodynamical process of BH energy extraction occurs in the "inner engine", composed of a rotating BH in a background of very low density ionized plasma and a magnetic field, aligned and parallel with the rotation axis. These features are in contrast with the usual assumptions of a vacuum solution, of asymptotic flatness, and more important, the "inner engine" must be, necessarily, non-stationary. The electrons accelerate to ultrahigh-energies at expenses of the BH extractable energy: the mass and spin of the BH decrease in time keeping constant the BH irreducible mass. Jorge Rueda comments: Quantitatively, we obtain for both GRB systems the three ‘inner engine’ parameters, the BH mass M, the spin α, and the magnetic field B0, by requiring that the system satisfies three conditions: (1) the energetics of the GeV photon emission originates in the rotational energy of the BH; (2) the synchrotron radiation of the electrons in the magnetic field sets the timescale of the observed GeV luminosity; (3) the system is transparent to the emission of GeV photons. When applying this model to GRB 130427A, we find [1]: α= 0.5, M = 2.3 solar masses, just above the critical mass for the gravitational collapse of a neutron star (NS), and B0 = 3x1010 G, sufficient to explain the GeV emission via synchrotron radiation. For GRB 190114C [11]: α= 0.4, M = 4.4 solar masses, and B0 = 4x1010 G. This, for the first time, gives the clear evidence that BHs in BdHNe I form by hypercritical accretion onto a NS. Figure 3 shows how the ‘inner engine’ accelerates electrons away from the BH, emitting synchrotron radiation as a function of the pitch angle (angle between the electron motion and the magnetic field). Ruffini adds: The ‘inner engine’ operates in a sequence of discrete ‘quantized’ steps, authentic electric discharges, emitting a ‘blackholic quantum’ of energy [15]: ε=ħΩeff. Along the rotation axis, electrons gain the total potential energy: ΔΦ=ħωeff. Here Ωeff e ωeff are effective frequencies that depend only on fundamental constants, the electron mass, charge, and the Planck mass; on the neutron mass, and on the three ‘inner engine’ parameters. We obtain for the ‘blackholic quantum,’ ε~1037 erg, a maximum energy of electrons, ΔΦ~1018 eV, and the emission timescale of the synchrotron radiation, 10-14 s, leading to a GeV photon luminosity of 1051 erg/s. Every quantized event takes away only 10-16 of the rotational energy of the BH, implying that the process can be long-lasting, providing ionized plasma to feed the BH be present. C. L. Bianco and She-Sheng Xue also recall: All the above imply a full shift of paradigm from the traditional, gravitational accretion of high-density matter onto a BH. It seems to be too expensive for Nature to accelerate high-density matter in bulk, against the gravitational pull of the BH, to bring it to a distance of 1016-1017 cm, where it becomes transparent to high-energy photons. Our ‘inner engine,’ instead, uses a more efficient process of electrodynamical accretion, acting on very low density ionized plasma of 10-14 g/cm3[16], producing the observable high-energy emission directly close to the horizon of the BH, where the rotational energy of the Kerr BH is extracted. Narek Sahakyan, Mile Karlica, Yen Chen Chen, and Yu Wang comment: We are eager to apply this model, successfully used for GRB 130427A [1] and GRB 190114C [11], to extract the energy of BHs of much larger masses in AGNs (e.g., the central BH of M87 of nearly 1010 solar masses), for which the ‘inner engine’ repetition timescale is of the order of hours [15]. Christian Cherubini and Simonetta Filippi comment: One of the most intriguing aspects of this result is that the emission of the blackholic quantum of 1037 erg, with a timescale of 10-14 s, occurs in the entire universe in view of the ubiquitous and homogenous cosmological presence of GRBs. It is interesting that scenario proposing a possible role of GRB in the evolution of life in our universe was introduced in [16] and may now be further quantitatively extended following the observation of GRB 130427A.


References:
[1] R. Ruffini, R. Moradi, J. A. Rueda, L. Becerra, C. L. Bianco, C. Cherubini, S. Filippi, Y. C. Chen, M. Karlica, N. Sahakyan, et al., Astroph. J. 886, 82 (2019), arXiv:1812.00354, URL https://arxiv.org/abs/1812.00354.
[2] R. Ruffini and J. A. Wheeler, Phys. Today 24, 30 (1971), URL https://doi.org/10.1063/1.3022513.
[3] J. R. Oppenheimer and H. Snyder, Phys. Rev. 56, 455 (1939), URL https://doi.org/10.1103/PhysRev.56.455.
[4] R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963), URL https://doi.org/10.1103/PhysRevLett.11.237.
[5] L. Landau and E. Lifshitz, in The Classical Theory of Fields (Fourth Edition) (ELSEVIER, Amsterdam, 1975), vol. 2 of Course of Theoretical Physics, p. xiii, fourth edition ed., ISBN 978-0-08-025072-4, URL https://doi.org/10.1016/B978-0-08-025072-4.50007-1.
[6] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman and Co., San Francisco, 1973).
[7] D. Christodoulou, Phys. Rev. Lett. 25, 1596 (1970), URL https://doi.org/10.1103/PhysRevLett.25.1596.
[8] D. Christodoulou and R. Ruffini, Phys. Rev. D 4, 3552 (1971), URL https://doi.org/10.1103/PhysRevD.4.3552.
[9] S. W. Hawking, Physical Review Letters 26, 1344 (1971), URL https://doi.org/10.1103/PhysRevLett.26.1344.
[10] D. Christodoulou and R. Ruffini, Essay submitted to the Gravity Research Foundation Third prize (1971), URL https://www.gravityresearchfoundation.org/s/christodoulou_ruffini.pdf.
[11] R. Moradi, J. A. Rueda, R. Ruffini, and Y. Wang, ArXiv e-prints (2019), arXiv:1911.07552, URL https://arxiv.org/ abs/1911.07552.

2
Fig. 2. The evolutionary path (left-hand side, from up to down) leading to the progenitor of a BdHN I, the carbon-oxygen star (COcore)-NS binary [18, 19]. The BdHN I starts with the second supernova (SN) explosion ("SN-rise"), leaving a newborn NS (νNS), and producing a hypercritical accretion process onto the NS companion [13]. As the NS reaches the critical mass, a BH is formed [14, 20], and a cavity is formed around it [16]. The newborn BH, the embedding magnetic field inherited from the collapsed NS, and the surrounding low-density ionized plasma, conform the "inner engine" of the GRB, which explains the high-energy GeV emission via synchrotron radiation.

3
Fig. 3. Figure taken from [11] with the kind permission of the authors. Contours of constant pitch angle (colored curves from purple to pink) of electrons moving in the uniform magnetic field around the rotating BH (filled black disk). The black dashed curves represent contours of constant electric energy density, and the colored background shows how it decreases with distance. Compare and contrast these theoretical expectations with the recent observational data of M87 (see Figure 4 in [21]), which harbored a supermassive BH of nearly 1010 solar masses.

[12] J. A. Rueda and R. Ruffini, Astroph. J. 758, L7 (2012), arXiv:1206.1684, URL https://doi.org/10.1088/2041-8205/758/1/L7.
[13] C. L. Fryer, J. A. Rueda, and R. Ruffini, Astroph. J. 793, L36 (2014), arXiv:1409.1473, URL https://doi.org/10.1088/2041-8205/793/2/L36.
[14] L. Becerra, C. L. Bianco, C. L. Fryer, J. A. Rueda, and R. Ruffini, Astroph. J. 833, 107 (2016), arXiv:1606.02523, URL https://doi.org/10.3847/1538-4357/833/1/107.
[15] J. A. Rueda and R. Ruffini, arXiv e-prints (2019), arXiv:1907.08066, URL https://arxiv.org/abs/1907.08066.
[16] R. Ruffini, J. D. Melon Fuksman, and G. V. Vereshchagin, Astroph. J. 883, 191 (2019), arXiv:1904.03163, URL https://doi.org/10.3847/1538-4357/ab3c51.
[17] P. Chen and R. Ruffini, Astronomy Reports 59, 469 (2015), arXiv:1403.7303, URL https://doi.org/10.1134/S1063772915060098.
[18] C. L. Fryer, F. G. Oliveira, J. A. Rueda, and R. Ruffini, Physical Review Letters 115, 231102 (2015), arXiv:1505.02809, URL https://doi.org/10.1103/PhysRevLett.115.231102.
[19] L. Becerra, F. Cipolletta, C. L. Fryer, J. A. Rueda, and R. Ruffini, Astroph. J. 812, 100 (2015), arXiv:1505.07580, URL https://doi.org/10.1088/0004-637X/812/2/100.
[20] L. Becerra, C. L. Ellinger, C. L. Fryer, J. A. Rueda, and R. Ruffini, Astroph. J. 871, 14 (2019), arXiv:1803.04356, URL https://doi.org/10.3847/1538-4357/aaf6b3.
[21] J. Y. Kim, T. P. Krichbaum, R. S. Lu, E. Ros, U. Bach, M. Bremer, P. de Vicente, M. Lindqvist, and J. A. Zensus, Astron. Astroph. 616, A188 (2018), arXiv:1805.02478, URL https://doi.org/10.1051/0004-6361/201832921.



2. Le centre ICRANet en Arménie a obtenu des espaces à titre gratuit en Marshal Baghramyan Avenue, Erevan

Le centre ICRANet Arménie a été établi depuis l'approbation de l'accord de siège par le Gouvernement de la République d'Arménie. Cet accord a été signé à Rome le 14 Février 2015 par le Prof. Remo Ruffini, Directeur d'ICRANet et par l'Ambassadeur de l'Arménie en Italie, Sargis Ghazaryan et a été approuvé à l'unanimité par le Parlement arménien. Le 3 Octobre 2019, le Gouvernement de la République d'Arménie a adopté une loi (N 1343-A) signée par le Premier Ministre N. Pashinyan, qui fournit au centre ICRANet 270 m2 d'espace à titre gratuit et sans limite temporel, dans le bâtiment de l'Institut de Sciences géologiques (adresse: 24 Marshal Baghramyan Avenue, Yerevan 0019, Kentron district). Cet bureau a une entrée séparée, en ligne avec l'accord de siège, et donne à l'établissement l'extraterritorialité (immunité diplomatique). Il inclut 6 salles de travail et une grande salle de conférence (avec une capacité maximale de 70 personnes). Le siège se trouve sur la prestigieuse Marshal Baghramyan Avenue, à coté du Parlement arménien et du Palais du Président. Ça ouvre des nouvelles perspectives pour les activités d'ICRANet en Arménie et permettra au centre d'accueillir des scientifiques de toutes les institutions membres d'ICRANet ainsi que d'organiser des conférences et séminaires internationaux.
4
Fig. 4: Le Président de la République d'Arménie, S.E. Armen Sarkissian dans sa résidence à Erevan rencontre le Prof. Narek Sahakyan pendant la visite de la délégation d'ICRANet, guidée par le Prof. Remo Ruffini, à l'occasion de la Journée de la Science italo-arménienne, Erevan, 15 April 2019.



3. Renouvellement de l'accord de collaboration entre l'ICRANet et le CNR, 23 Décembre 2019

5

Le 23 Décembre 2019, l'accord de collaboration entre l'ICRANet et le CNR (Consiglio Nazionale delle Ricerche - Italie) a été renouvelé. Ce renouvellement a été signé par le Prof. Massimo Inguscio (Président du CNR) et par le Prof. Remo Ruffini (Directeur d'ICRANet).
Cet accord demeura valide pour 3 années et les principales activités conjointes qui seront développées dans le cadre de cet accord comptent: la promotion des activités de recherche et d'observation dans le champ de 6l'astrophysique relativiste; la collaboration entre des membres de la Faculté, des chercheurs, des post-doctorat fellows et des étudiants; l'organisation de séminaires, conférences, workshops, cours de formations et de recherche, et publications conjointes.
Pour le texte de l'accord:
http://www.icranet.org/index.php?option=com_content&task=view&id=892.



4. Stakeholders' conference on the future of the Marie Sklodowska-Curie Actions, Brussels, 3 Décembre 2019

Le 3 Décembre 2019, le Prof. Ruffini a participé à la Stakeholders' Conference on the Future of the Marie Skłodowska-Curie Actions MSCA under Horizon Europe, qui s'est tenue à Brussels. Ca a été une importante opportunité pour lui et pour les autres participants pour présenter leurs idées sur la Marie Sklodowska-Curie Actions (MSCA) dans le cadre du programme Horizon Europe (2021-2027).
Pour d'information en consultative MSCA, voir: http://ec.europa.eu/research/mariecurieactions/.

6
Fig. 5: Le Prof. Ruffini pendant son discours à la "Stakeholders' conference on the future of the Marie Sklodowska-Curie Actions", Brussels, 3 Décembre 2019.



5. Visite de l'artiste Michelangelo Pistoletto, ICRANet Pescara, 14-15 Janvier 2020


Le 14 et 15 Janvier 2020, le célèbre artiste italien Michelangelo Pistoletto a visité le centre ICRANet de Pescara. Pistoletto est un artiste contemporain, peintre et sculpteur reconnu comme un des représentants principaux de l'Arte Povera italienne. Ses œuvres sont exposées dans les principaux musées italiens (le Musée de Capodimonte - Naples, la Galerie nationale d'Art moderne - Rome, la Galerie des Offices - Florence, le MAXXI - Rome, ...) ainsi que mondiaux (Musée du Louvre et Centre Georges Pompidou - Paris, le Metropolitan Museum of Art, le MoMA et le Musée Solomon R. Guggenheim - New York, ...).
Le Prof. Ruffini a accompagné Pistoletto dans sa visite au centre ICRANet, en lui montrant tous les documents, tableaux et sculptures gardés-là. Il lui a aussi montré l'exposition "Einstein, Fermi, Heisenberg et la naissance de l'Astrophysique relativiste", organisé dans la bibliothèque d'ICRANet. A la fin de sa visite, Michelangelo Pistoletto a laissé sa signature datée sur le mur, à coté de celles laissées par des autres éminentes personnalités qui ont visité l'ICRANet (scientifiques, politiciens, artistes, ...). Pendant sa visite, Pistoletto a eu un important débat avec le Prof. Ruffini, sur la relation/corrélation entre l'art et la science, et le Prof. Ruffini lui a illustré les plus récents résultats scientifiques sur lesquels le group de recherche d'ICRANet est en train de travailler.

7
Fig. 6: Michelangelo Pistoletto et le Prof. Ruffini pendant leur débat sur la corrélation entre art et sciences.
8
Fig. 7: La signature datée de Michelangelo Pistoletto sur le mur du centre ICRANet de Pescara.
 
9
Fig. 8: Le Prof. Ruffini montre à Michelangelo Pistoletto et à sa femme des tableaux importants gardés dans son bureau.
10
Fig. 9: Michelangelo Pistoletto et sa femme rencontrent les Professeurs de la Faculté d'ICRANet et les chercheurs.

Le matin du Mercredi 15 Janvier, Pistoletto et le Prof. Ruffini ont rencontré le Maire de Pescara, Dr Carlo Masci, auprès de la Municipalité de Pescara. Pendant ce rencontre, Pistoletto a rappelé sa longue relation avec la ville de Pescara, ou il s'est rendu souvent dans les années ‘70s, quand la ville attirait l'attention de l'Union européenne et de plusieurs artistes du monde entier. Le Maire Masci a souligné que ça a été un meeting fondamentale, qui pourra ouvrir la voie à des collaborations futures, surtout pour ce qui concerne la requalification des espaces urbains. A la fin du meeting, il a donné comme cadeau à Pistoletto un livre ou étaient gardées des cartes postales réalisées par Basilio Cascella.
Communiqués de presse sur cette meeting:
• Rete 8: http://www.rete8.it/cronaca/123pescara-masci-riceve-la-visita-del-maestro-pistoletto/
• Abruzzo news: https://www.abruzzonews.eu/michelangelo-pistoletto-e-remo-ruffini-ricevuti-da-sindaco-masci-foto-582313.html

11
12
Fig. 10 et 11: L'artiste italien Michelangelo Pistoletto avec le Prof. Remo Ruffini, pendant leur rencontre avec le Maire de Pescara, Dr Carlo Masci auprès de la Municipalité de Pescara, 15 Janvier 2020.



6. "Mercurio in sole visu". Deuxième manifestation du projet "Alternanza scuola-lavoro" avec le Lycée scientifique G. Galilei de Pescara auprès du centre ICRANet, 11 Novembre 2019


Le 11 Novembre 2019, le centre ICRANet de Pescara a organisé la deuxième journée du projet "Alternanza scuola-lavoro", à la présence des étudiants des classes 4°B, 4°D et 4°F du Lycée scientifique Galileo Galilei de Pescara, sous la supervision de leur tuteur, Prof. Tiziana Pompa.
Présidée par le Prof. Costantino Sigismondi, collaborateur ICRANet, la séance du matin a été ouverte à 11 heures par le discours inaugural du Prof. Vladimir Belinski, Professeur de la Faculté ICRANet, pour continuer après avec des présentations plénières en vidéoconférence par le Prof. Jay M. Pasachoff du Williams College ("Projects for the Mercury transit of 2019"), par le Prof. Sigismondi ("SAROS, Transiti Eclissi e Occultazioni tra Collegio Romano e Minerva"), par le Prof. Terry Mahoney du IAU ("Kepler and Gassendi: the first observed transit") et par le Prof. Lorenzo Ricciardi de l'Université Roma Tre ("La tecnologia e la società nel 2032").

13
Fig. 12: Le Prof. Costantino Sigismondi, président de l'évent, introduit le Prof. Vladimir Belinski (Professeur de la Faculté ICRANet).
14
Fig. 13: Participants à la deuxième journée du projet "Alternanza scuola-lavoro".

De 13 à 15 heures, les étudiants, guides par le Prof. Sigismondi et par leur tuteurs, ont observé le transit de la planète Mercure sur le Soleil, à travers un télescope optique qui été placé pour l'occasion dans le jardin d'ICRANet. Dans la séance de l'après-midi, on a eu des présentations plénières en vidéoconférence par le Prof. Wolfgang Beisker du IOTA/ES ("The transit of Mercury and the asteroidal occultations"), par le Prof. Bjӧrn Kattendit du IOTA/ES ("Observations of the transit f Mercury with a 28cm SC Telescope in 2016"), par le Prof. Hamed Altafi, Observatoire de Tehran ("Il transito di Mercurio del 2016 e del 2019") et par le Prof. Marcelo Emilio, Universidade de Ponta Grossa ("Diametro solare con SOHO e SDO"). des autres interventions ont été présentées en vidéoconférence par le Prof. Michele Bianda, par le Prof. Axel Wittmann, par le Prof. Marta Grabowska, par la Prof. Irene Sigismondi, par le Prof. Paolo Ochner, par le Prof. Francesco Berrilli, par le Prof. Lukasz Wieteska, par le Prof. Luigi M. Bordoni, par le Prof. Francesco Giannini, par le Prof. Rodolfo Calanca, par le Prof. Francesco Berrilli et par le Prof. Cesare Barbieri. La journée s'est conclue avec les salutation et les remerciements du Prof. Remo Ruffini.

15
Fig. 14: Les Professeurs et les étudiants préparent le télescope optique pour les observations, dans le jardin d'ICRANet.
16
Fig. 15: Observations du transit de la planète Mercure sur le Soleil, à travers le télescope optique.

Pour des informations en plus sur l'évent: http://www.icranet.org/index.php?option=com_content&task=view&id=1264#2
Pour les vidéos de l'évent:
- https://www.youtube.com/watch?v=kmKJ-Ppsftg&list=PLr5RLbSWSonviNqCXECM-5ahTACPb_JdY&index=4
- https://www.youtube.com/watch?v=SUHVWsvE7G0&list=PLr5RLbSWSonviNqCXECM-5ahTACPb_JdY&index=5



7. "Betelgeuse dimming: the state of the star", workshop ICRANet Pescara, 17 Janvier 2020


Le 17 Janvier 2020, le centre ICRANet de Pescara a accueilli le séminaire international titré "Betelgeuse dimming: the state of the star", à l'occasion d'un événement historique, avec la participation de certains des scientifiques les plus réputés dans ce domaine. Betelgeuse, l'alpha d'Orion, a été classifiée comme l'étoile la plus brillante de la constellation de Ptolémée environ 150 AD. Elle est une variable semi régulière qui, dans les phases de majeure luminosité, peut être l'étoile la plus brillante de l'hémisphère du nord, avec une magnitude négative. Depuis Octobre 2019, sa luminosité est en diminution et a perdu une magnitude, en atteignant la magnitude visuelle de 1.4, au niveau de Regulus, l'alpha de Leo. Donc, qu'est-ce qu'il va se passer? Ça a été le sujet principal abordé pendant ce workshop.

17
Fig. 16: Betelgeuse comme en 1702, Clémentine Gnomon - Rome.

Le workshop, présidé par le Prof. Costantino Sigismondi, collaborateur ICRANet, a été ouvert par les Lectio magistralis du Prof. Ruffini, Directeur d'ICRANet ("Supernovae and Gamma-Ray bursts"), et du Prof. Sigismondi ("The case of eta Carinae in 1843"). Le workshop a continué après avec des présentations plénières en vidéoconférence par le Prof. Cersare Barbieri, l'Université de Padova ("Astronomy and media"), par la Prof. Margarita Karovska, Harvard CfA ("Multiperiodicity in the Light Curve of Alpha Orionis"), par le Prof. Paolo Ochner, Observatoire astrophysique de Asiago ("Galactic SN classification"), par la Prof. Stella Kafka, Directrice AAVSO ("AAVSO Mission and Database") et par le Prof. Massimo Turatto, INAF/Observatoire de Padova ("Supernova and variability from spectra and light curves").

18
Fig. 17: Le Prof. Ruffini et le Prof. Sigismondi pendant leur présentations au workshop.
19
Fig. 18: Le Prof. Vereshchagin et le Prof. Sigismondi pendant leur présentations au workshop.

Pour des informations en plus: http://www.icranet.org/index.php?option=com_content&task=view&id=1281



8. Intervention du Prof. Ruffini à l'événement "Science by Night", Lycée scientifique G. Galilei de Pescara, 18 Janvier 2020

12
Fig. 19: Prof. Ruffini pendant sa présentation "Observing a newly-born Black Hole", à l'occasion de Science by Night auprès du Lycée scientifique G. Galilei de Pescara, 18 Janvier 2020.

Le 18 Janvier 2020, le Lycée scientifique Galileo Galilei de Pescara a organisé un événement important titré "Science by Night". Cette manifestation a représenté une opportunité unique pour prendre partie aux activités scientifiques visant à présenter soit le charme de la recherche en tant que métier, soit son impact social significatif.
Dans cette occasion, le Prof. Remo Ruffini, Directeur d'ICRANet, et le Prof. Costantino Sigismondi, collaborateur ICRANet, ont été invité à participer. Le Prof. Ruffini a donné une présentation titrée "Observing a newly-born Black Hole".
Pour des information en plus sur l'événement et son program: http://galileipescara.it/blog/science-by-night-v-ed/



9. Visite du the Préfet de Pescara et exposition "Einstein, Fermi, Heisenberg et la naissance de l'Astrophysique relativiste", ICRANet Pescara, 25 Janvier-29 Février 2020

L'ICRANet a le plaisir d'annoncer l'exposition "Einstein, Fermi, Heisenberg et la naissance de l'Astrophysique relativiste" auprès du centre ICRANet à Pescara, qui sera ouverte du 25 Janvier au 29 Février 2020 (du Lundi au Vendredi, de 9:00 heures à 18:00 heures). L'exposition a été organisé à l'occasion de la cérémonie de remise de la citoyenneté d'honneur de Pescara à la sénatrice à vie Liliana Segre, à l'Union des communautés juives italiennes, à la Brigade juive ainsi que à toutes les victimes de la Shoah, par le Maire Carlo Masci. Certaines des plus hautes autorités locales institutionnelles, militaires et religieuses ont été invitées à visiter l'exposition. Le Lundi 27 Janvier, le Préfet de Pescara, S.E. Gerardina Basilicata, a visité l'exposition. Le Prof. Ruffini lui a accompagné pendant sa visite, en lui illustrant la naissance de l'Astrophysique relativiste grâce au rôle fondamental joué par des personnalités éminents telles qu'Albert Einstein, Enrico Fermi, Robert Oppenheimer, John Von Neumann et Werner Heisenberg.

21
22
Fig. 20 and 21: Le Préfet de Pescara, S.E. Gerardina Basilicata, visite l'exposition "Einstein, Fermi, Heisenberg et la naissance de l'Astrophysique relativiste" auprès du centre ICRANet à Pescara.



10. Visites scientifiques au centre ICRANet de Pescara

Dr Seddigheh Tizchang (Institute for Research in Fundamental Sciences IPM - Iran), 6 - 19 Novembre 2019. La Dr Tizchang a visité le centre ICRANet de Pescara et a eu la possibilité de poursuivre ses recherches et analyses avec les scientifiques d'ICRANet. Pendant sa visite, elle a aussi donné un séminaire titré "Probing the effect of background fields on the polarization of photons from CMB to lasers".
Dr Orchidea Maria Lecian (Université de Rome "La Sapienza" - Italie), 7-8 Novembre 2019. Pendant sa visite, la Dr Lecian a eu la possibilité de poursuivre ses recherches et analyses avec les scientifiques d'ICRANet. Pendant sa visite, elle a aussi donné un séminaire titré "Quantum-systems investigations vs optical-systems ones".
Prof. Mathews Grant (Centre d'Astrophysique auprès de l'Université Notre Dame - USA), 19-20 Novembre 2019. Le Prof. Grant a visité le centre ICRANet de Pescara et a eu la possibilité de poursuivre ses recherches et analyses avec les scientifiques d'ICRANet.
Academician Sergei Kilin (Académie nationale de Sciences de Biélorussie), 15-17 Décembre 2019. L'Académicien Kilin a participé au 21° ICRANet Steering Committee meeting, qui s'est tenu à Pescara le 16 Décembre. Il a eu, donc, la possibilité de visiter le centre ICRANet de Pescara ainsi que de poursuivre ses recherches et analyses avec les scientifiques d'ICRANet.
Prof. Johann Rafelski (Université d'Arizona - USA), 14-17 Décembre 2019. Le Prof. Rafelski a participé au 21° ICRANet Steering Committee meeting, qui s'est tenu à Pescara le 16 Décembre. Il a eu, donc, la possibilité de visiter le centre ICRANet de Pescara ainsi que de poursuivre ses recherches et analyses avec les scientifiques d'ICRANet.
Dr Yunlong Zheng (Université de Sciences et Technologie de Chine), 12-26 Décembre 2019. Le Dr Zheng a visité le centre ICRANet de Pescara et a eu la possibilité de poursuivre ses recherches et analyses avec les scientifiques d'ICRANet. Accompagné par le Prof. Ruffini, le Dr Zheng a visité aussi l'Université Campus Bio-medico de Rome.

23
24
25
26
27
28
Dr Seddigheh Tizchang
Dr Orchidea Maria Lecian
Prof. Mathews Grant
Académicien Sergei Kilin
Prof. Johann Rafelski
Dr Yunlong Zheng



11. Séminaires au centre ICRANet de Pescara

Séminaire de la Dr Orchidea Maria Lecian
Jeudi 7 Novembre 2019, la Dr Orchidea Maria Lecian (Université de Rome "La Sapienza" - Italie), a donné un séminaire titré "Quantum-systems investigations vs optical-systems ones", ayant comme résumé:
The features of quantum systems, quantum-optical-systems and optical systems can be outlined according to the possibility for the study of the properties of matter fields and of the gravitational field. Quantum properties of particles and of the background gravitational field at quantum scales, at the semi-classical regime and at the classical level are analyzed by quantum systems and optical-systems devices, for which the experimental features of the research are compared. Investigation in cosmology and in early cosmology can be envisaged. The features of quantum operators to be evaluated by these techniques are pointed out. The properties of relativistic objects are this way examined. The features of the Einstein field equations and of their initial conditions are defined. The degrees of freedom available for the Einstein field equations and their initial conditions are characterized.
L'annonce du séminaire a été aussi publié sur le site ICRANet: http://www.icranet.org/index.php?option=com_content&task=blogcategory&id=89&Itemid=781

29
30
Fig. 22 et 23: La Dr Orchidea Maria Lecian en donnant son séminaire auprès du centre ICRANet de Pescara, 7 Novembre 2019.


Séminaire de la Dr Seddigheh Tizchang
Vendredi 15 Novembre 2019, la Dr Seddigheh Tizchang (Institute for Research in Fundamental Sciences IPM - Iran), a donné un séminaire titré "Probing the effect of background fields on the polarization of photons from CMB to lasers", ayant comme résumé:
It is known that the polarization of photons can partly rotate and/or convert to circular polarization via forward Compton scattering in the presence of a background field. Based on this fact, we show that Compton scattering in presence of non-trivial background and scalar perturbation of metric, in addition to generate circularly polarized microwaves, can lead to a B-mode polarization for the CMB. Besides, we proposed an earth-based experiment in which the polarization of the laser photon convert to circular one via forward scattering by high energy charged lepton beam in presence of non-trivial background fields such as Non-commutative space-time and Lorentz violation.
L'annonce du séminaire a été aussi publié sur le site ICRANet: http://www.icranet.org/index.php?option=com_content&task=blogcategory&id=89&Itemid=781

31
32
Fig. 24 et 25: La Dr Seddigheh Tizchang en donnant son séminaire auprès du centre ICRANet de Pescara, 15 Novembre 2019.



12. Le Prof. Ruffini décerné le prix Rosone d'oro 2019, Pianella, Italie, 21 Décembre 2019

Le 21 Décembre 2019, le Prof. Ruffini, Directeur d'ICRANet, a été décerné le prix Rosone d'oro 2019 par la Municipalité de Pianella. Ce prix a été assigné au Prof. Ruffini dans la section "Sciences" du Prix pour la Littérature, l'Art et les Sciences ‘Città di Pianella' pour sa personnalité éminente et ses résultats atteints soit au niveau national qu'international.
33
34
35
Fig. 26: Le Prof. Ruffini reçoit son prix.
Fig. 27: Le Prof. Ruffini participe à la cérémonie officielle avec les autres récipients.
Fig. 28: Le Prof. Ruffini avec certains des organisateurs de la cérémonie officielle.



13. Meetings à venir

L'ICRANet, en collaboration avec l'Académie nationale des Sciences de Biélarussie, est en train d'organiser une conférence internationale à Minsk, Bélarussie, du 20 au 24 Avril 2020 : le 4 ème Zeldovich meeting. On attend la participation de scientifiques de pays voisins, tells que l'Estonie, la Lettonie, la Lituanie, la Pologne, la Russie, l'Ukraine ainsi que des pays balkaniques, de l'Europe de l'Ouest et de l'est et de l'Amérique. Les vastes domaines de recherche de Ya. B. Zeldovich, qui vont de la physico-chimie, à la physique nucléaire et des particules élémentaires, à l'astrophysique et la cosmologie, seront le sujet de cette conférence.
Les régistrations seront ouvertes jusqu'au 15 Mrs 2020 au lien suivant : http://dbserver.icra.it:8080/meetings/registration_zeld4.htm

24

Du 30 Octobre au 1 Avril 2020, on peut soumettre an abstract au lien suivant: https://uploader.icranet.org/zeld4/.

La liste préliminaire des participants comprend:
• Abhay Ashtekar, Institute for Gravitation & the Cosmos, Penn State University, USA
• Rong-Gen Cai, Institute of Theoretical Physics, Chinese Academy of Sciences, China
• Jens Chluba, Jodrell Bank Centre for Astrophysics, University of Manchester, UK
• Alexander Dolgov, Novosibirsk State University and ITEP, Russia
• Jaan Einasto, Tartu Observatory, Estonia
• Stefan Gillessen, Max Planck Institute for Extraterrestrial Physics, Germany
• Claus Lämmerzahl, ZARM, Germany
• Vladimir Lipunov, Moscow State University, Russia
• Felix Mirabel, CEA Saclay, France
• Slava Mukhanov, Ludwig-Maximilians-Universität München, Germany
• Konstantin Postnov, Sternberg Astronomical Institute of the Moscow State University, Russia
• Piero Rosati, University of Ferrara, Italy
• Jorge Rueda, ICRANet, Italy
• Remo Ruffini, ICRANet, Italy
• Nikolay Shakura, Sternberg Astronomical Institute of the Moscow State University, Russia
• Dmitry Sokoloff, Moscow State University, Russia;
• Alexey Starobinsky, Landau institute for theoretical physics, RAS, Russia

Pour des information en plus sur cette conférence: http://www.icranet.org/zeldovich4



14. Publications récentes

Sahakyan, N., Investigation of the Gamma-ray Spectrum of CTA 102 During the Exceptional Flaring State in 2016-2017, accepted for publication in Astronomy & Astrophysics, November 2019.
The flat spectrum radio quasar CTA 102 entered an extended period of activity from 2016 to 2017 during which several strong γγ-ray flares were observed. Using Fermi large area telescope data a detailed investigation of \gray spectra of CTA 102 during the flaring period is performed. In several periods the \gray spectrum is not consistent with a simple power-law, having a hard photon index with an index of ∼(1.8−2.0)∼(1.8−2.0) that shows a spectral cutoff around an observed photon energy of ∼(9−16)∼(9−16) GeV. The internal γγ-ray absorption via photon-photon pair production on the broad line-region-reflected photons cannot account for the observed cut-off/break even if the emitting region is very close to the central source. This cut-off/break is likely due to a similar intrinsic break in the energy distribution of emitting particles. The origin of the spectral break is investigated through the multiwavelength modeling of the spectral energy distribution, considering a different location for the emitting region. The observed X-ray and γγ-ray data is modeled as inverse Compton scattering of synchrotron and/or external photons on the electron population that produce the radio-to-optical emission which allowed to constrain the power-law index and cut-off energy in the electron energy distribution. The obtained results are discussed in the context of a diffusive acceleration of electrons in the CTA 102 jet.
Link: https://ui.adsabs.harvard.edu/abs/2019arXiv191112087S/abstract


Acciari, V. A., et al. Monitoring of the radio galaxy M 87 during a low emission state from 2012 to 2015 with MAGIC, published in Monthly Notices of the Royal Astronomical Society, January 2020.
M 87 is one of the closest (z=0.00436) extragalactic sources emitting at very-high-energies (VHE, E > 100 GeV). The aim of this work is to locate the region of the VHE gamma-ray emission and to describe the observed broadband spectral energy distribution (SED) during the low VHE gamma-ray state. The data from M 87 collected between 2012 and 2015 as part of a MAGIC monitoring programme are analysed and combined with multi-wavelength data from Fermi-LAT, Chandra, HST, EVN, VLBA and the Liverpool Telescope. The averaged VHE gamma-ray spectrum can be fitted from 100 GeV to 10 TeV with a simple power law with a photon index of (-2.41 ± 0.07), while the integral flux above 300 GeV is (1.44 ± 0.13) × 10-12 cm-2 s-1. During the campaign between 2012 and 2015, M 87 is generally found in a low emission state at all observed wavelengths. The VHE gamma-ray flux from the present 2012-2015 M 87 campaign is consistent with a constant flux with some hint of variability (3 σ) on a daily timescale in 2013. The low-state gamma-ray emission likely originates from the same region as the flare-state emission. Given the broadband SED, both a leptonic synchrotron self Compton and a hybrid photo-hadronic model reproduce the available data well, even if the latter is preferred. We note, however, that the energy stored in the magnetic field in the leptonic scenario is very low suggesting a matter dominated emission region.
Link: https://doi.org/10.1093/mnras/staa014


MAGIC Collaboration; Acciari, V. A. et al., Testing emission models on the extreme blazar 2WHSP J073326.7+515354 detected at very high energies with the MAGIC telescopes, published in Monthly Notices of the Royal Astronomical Society, Volume 490, Issue 2, p.2284-2299.
Extreme high-energy-peaked BL Lac objects (EHBLs) are an emerging class of blazars. Their typical two-hump-structured spectral energy distribution (SED) peaks at higher energies with respect to conventional blazars. Multiwavelength (MWL) observations constrain their synchrotron peak in the medium to hard X-ray band. Their gamma-ray SED peaks above the GeV band, and in some objects it extends up to several TeV. Up to now, only a few EHBLs have been detected in the TeV gamma-ray range. In this paper, we report the detection of the EHBL 2WHSP J073326.7+515354, observed and detected during 2018 in TeV gamma rays with the MAGIC telescopes. The broad-band SED is studied within an MWL context, including an analysis of the Fermi-LAT data over 10 yr of observation and with simultaneous Swift-XRT, Swift-UVOT, and KVA data. Our analysis results in a set of spectral parameters that confirms the classification of the source as an EHBL. In order to investigate the physical nature of this extreme emission, different theoretical frameworks were tested to model the broad-band SED. The hard TeV spectrum of 2WHSP J073326.7+515354 sets the SED far from the energy equipartition regime in the standard one-zone leptonic scenario of blazar emission. Conversely, more complex models of the jet, represented by either a two-zone spine-layer model or a hadronic emission model, better represent the broad-band SED.
Link: https://doi.org/10.1093/mnras/stz2725


MAGIC Collaboration; Acciari, V. A., et al., Observation of inverse Compton emission from a long γ-ray burst, published in Nature, Volume 575, Issue 7783, p.459-463.
Long-duration γ-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterized by an initial phase of bright and highly variable radiation in the kiloelectronvolt-to-megaelectronvolt band, which is probably produced within the jet and lasts from milliseconds to minutes, known as the prompt emission. Subsequently, the interaction of the jet with the surrounding medium generates shock waves that are responsible for the afterglow emission, which lasts from days to months and occurs over a broad energy range from the radio to the gigaelectronvolt bands. The afterglow emission is generally well explained as synchrotron radiation emitted by electrons accelerated by the external shock. Recently, intense long-lasting emission between 0.2 and 1 teraelectronvolts was observed from GRB 190114C. Here we report multi-frequency observations of GRB 190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from 5 × 10-6 to 1012 electronvolts. We find that the broadband spectral energy distribution is double-peaked, with the teraelectronvolt emission constituting a distinct spectral component with power comparable to the synchrotron component. This component is associated with the afterglow and is satisfactorily explained by inverse Compton up-scattering of synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed teraelectronvolt component are typical for GRBs, supporting the possibility that inverse Compton emission is commonly produced in GRBs.
Link: https://ui.adsabs.harvard.edu/abs/2019Natur.575..459M/abstract


MAGIC Collaboration; Acciari, V. A. et al., Teraelectronvolt emission from the γ-ray burst GRB 190114C, published in Nature, Volume 575, Issue 7783, p.455-458.
Long-duration γ-ray bursts (GRBs) are the most luminous sources of electromagnetic radiation known in the Universe. They arise from outflows of plasma with velocities near the speed of light that are ejected by newly formed neutron stars or black holes (of stellar mass) at cosmological distances. Prompt flashes of megaelectronvolt-energy γ-rays are followed by a longer-lasting afterglow emission in a wide range of energies (from radio waves to gigaelectronvolt γ-rays), which originates from synchrotron radiation generated by energetic electrons in the accompanying shock waves. Although emission of γ-rays at even higher (teraelectronvolt) energies by other radiation mechanisms has been theoretically predicted, it has not been previously detected. Here we report observations of teraelectronvolt emission from the γ-ray burst GRB 190114C. γ-rays were observed in the energy range 0.2-1 teraelectronvolt from about one minute after the burst (at more than 50 standard deviations in the first 20 minutes), revealing a distinct emission component of the afterglow with power comparable to that of the synchrotron component. The observed similarity in the radiated power and temporal behaviour of the teraelectronvolt and X-ray bands points to processes such as inverse Compton upscattering as the mechanism of the teraelectronvolt emission. By contrast, processes such as synchrotron emission by ultrahigh-energy protons are not favoured because of their low radiative efficiency. These results are anticipated to be a step towards a deeper understanding of the physics of GRBs and relativistic shock waves.
Link: https://ui.adsabs.harvard.edu/abs/2019Natur.575..455M/abstract


Ruffini, R.; Moradi, R.; Rueda, J. A.; Becerra, L.; Bianco, C. L.; Cherubini, C.; Filippi, S.; Chen, Y. C.; Karlica, M.; Sahakyan, N.; Wang, Y.; Xue, S. S., On the GeV Emission of the Type I BdHN GRB 130427A, published in the Astrophysical Journal, Volume 886, Issue 2, article id. 82, 13 pp. (2019) on November 22, 2019.
We propose that the inner engine of a type I binary-driven hypernova (BdHN) is composed of Kerr black hole (BH) in a non-stationary state, embedded in a uniform magnetic field B0 aligned with the BH rotation axis and surrounded by an ionized plasma of extremely low density of 10−14 g cm−3. Using GRB 130427A as a prototype, we show that this inner engine acts in a sequence of elementary impulses. Electrons accelerate to ultrarelativistic energy near the BH horizon, propagating along the polar axis, θ = 0, where they can reach energies of ~1018 eV, partially contributing to ultrahigh-energy cosmic rays. When propagating with θ ≠ 0 through the magnetic field B0, they produce GeV and TeV radiation through synchroton emission. The mass of BH, M = 2.31M, its spin, α = 0.47, and the value of magnetic field B0 = 3.48 × 1010 G, are determined self consistently to fulfill the energetic and the transparency requirement. The repetition time of each elementary impulse of energy ε ~ 1037 erg is ~10−14 s at the beginning of the process, then slowly increases with time evolution. In principle, this "inner engine" can operate in a gamma-ray burst (GRB) for thousands of years. By scaling the BH mass and the magnetic field, the same inner engine can describe active galactic nuclei.
Journal link: https://iopscience.iop.org/article/10.3847/1538-4357/ab4ce6
arXiv link: https://arxiv.org/abs/1812.00354


De Lima, Rafael C. R.; Coelho, Jaziel G.; Pereira, Jonas P.; Rodrigues, Claudia V.; Rueda, J. A., Evidence for a multipolar magnetic Field in SGR J1745-2900 from X-ray light-curve analysis, accepted for publication in The Astrophysical Journal; in press.
SGR J1745-2900 was detected from its outburst activity in April 2013 and it was the first soft gamma repeater (SGR) detected near the center of the Galaxy (Sagittarius A∗). We use 3.5-year Chandra X-ray light-curve data to constrain some neutron star (NS) geometric parameters. We assume that the flux modulation comes from hot spots on the stellar surface. Our model includes the NS mass, radius, a maximum of three spots of any size, temperature and positions, and general relativistic effects. We find that the light-curve of SGR J1745-2900 could be described by either two or three hot spots. The ambiguity is due to the small amount of data, but our analysis suggests that one should not disregard the possibility of multi-spots (due to a multipolar magnetic field) in highly magnetized stars. For the case of three hot spots, we find that they should be large and have angular semi-apertures ranging from 16-67 degrees. The large size found for the spots points to a magnetic field with a nontrivial poloidal and toroidal structure (in accordance with magnetohydrodynamics investigations and NICER's recent findings for PSR J0030+0451) and is consistent with the small characteristic age of the star. Finally, we also discuss possible constraints on the mass and radius of SGR J1745-2900 and briefly envisage possible scenarios accounting for the 3.5-year evolution of SGR J1745-2900 hot spots.
arXiv link: https://arxiv.org/abs/1912.12336


Ruiz-Baier R., Gizzi A., Loppini A., Cherubini C. and Filippi S., Modelling Thermo-Electro-Mechanical Effects in Orthotropic Cardiac Tissue, published in Commun. Comput. Phys. Vol.27, No. 1, pp. 87-115 (January 2020).
In this paper we introduce a new mathematical model for the active contraction of cardiac muscle, featuring different thermo-electric and nonlinear conductivity properties. The passive hyperelastic response of the tissue is described by an orthotropic exponential model, whereas the ionic activity dictates active contraction incorporated through the concept of orthotropic active strain. We use a fully incompressible formulation, and the generated strain modifies directly the conductivity mechanisms in the medium through the pull-back transformation. We also investigate the influence of thermo-electric effects in the onset of multiphysics emergent spatiotemporal dynamics, using nonlinear diffusion. It turns out that these ingredients have a key role in reproducing pathological chaotic dynamics such as ventricular fibrillation during inflammatory events, for instance. The specific structure of the governing equations suggests to cast the problem in mixed-primal form and we write it in terms of Kirchhoff stress, displacements, solid pressure, dimensionless electric potential, activation generation, and ionic variables. We also advance a new mixed-primal finite element method for its numerical approximation, and we use it to explore the properties of the model and to assess the importance of coupling terms, by means of a few computational experiments in 3D.
Link: https://global-sci.org/intro/article_detail/cicp/13315.html


M. A. Prakapenia and G. V. Vereshchagin, Bose-Einstein condensation in relativistic plasma, published in Europhysics Letters, Volume 128, Number 5 (2019) 50002 on 30 of January 2020.
The phenomenon of Bose-Einstein condensation is traditionally associated with and experimentally verified at low temperatures: either of the nano-Kelvin scale for alkali atoms, or room temperatures for quasi-particles or photons in two dimensions. Here we demonstrate out of first principles that for certain initial conditions nonequilibrium plasma at relativistic temperatures of billions of Kelvin undergoes condensation, as predicted by Zeldovich and Levich in their seminal work. We determine the necessary conditions for the onset of condensation and discuss the possibilities to observe such a phenomenon in laboratory and astrophysical conditions.
Link: https://iopscience.iop.org/article/10.1209/0295-5075/128/50002