Relativistic hydrodynamic simulations of the Induced Gravitational Collapse GRB paradigm

MacKenzie L. Warren

University of Notre Dame, USA

Armenia
July 3rd, 2014
In introduction, hypercritical accretion onto neutron stars is mentioned. Observations of Gamma-ray Bursts and induced gravitational collapse are also discussed. The University of Notre Dame/Lawrence Livermore Supernova Model is introduced. Initial conditions are outlined, followed by the results section which includes inducing gravitational collapse and X-Ray emission. Future work and conclusions are also included.
Super-Eddington accretion: neutrino vs photon cooling

- Thorne-Zytkow Objects
- Supernova fallback
- Induced Gravitational Collapse paradigm of long GRBs
Observations of Gamma-ray Bursts

Flux \(\left(\frac{\text{ergs}}{\text{cm}^2 \text{s}} \right) \)

Episode 1

Episode 2

GRB 090618, I. Izzo et al. (2012)
Observed X-ray Photosphere

r_{SN} (km)

t (s)

GRB 090618, Izzo et al (2012)
Observed X-ray Photosphere

$\frac{k T(\text{keV})}{50}$

$\frac{\text{time(s)}}{50}$

GRB 090618, Izzo et al (2012)
Induced Gravitational Collapse

- **Episode 1:** Type Ib/c supernova explosion triggers accretion onto companion NS
- **Episode 2:** Companion NS reaches critical mass and collapses to BH

Ruffini et al. (2014)
Bondi-Hoyle Accretion
Accretion Shock Structure

- **X-ray photosphere**: $r \sim 10^9$ cm
- **Shock radius**
- **Neutrinosphere**: $r \sim 10^6$ cm
- **Bondi-Hoyle Accretion radius**: $r \sim 10^8$ cm

- Neutrinos: ν_e, $\bar{\nu}_e$
Goal: Find contribution to observations from ν processes

- Collapse timescale ~ 50 s
- Behaviour of x-ray photosphere

Simulations will also tell us:

- Sensitivity to accretion rates, progenitor masses, EoS, etc
- Detailed structure of accretion region
- Neutrino luminosities and spectra
University of Notre Dame/Lawrence Livermore Supernova Model

- Self-consistent core-collapse supernova model
 - Relativistic hydrodynamics
 - Neutrino transport: MGFLD
 - “Realistic” equation of state
- Spherically symmetric
Model: General Relativistic Hydrodynamics

Strong gravitational field: GR effects vital

\[
ds^2 = -a^2 \left[1 - \left(\frac{U}{\Gamma} \right)^2 \right] dt^2 - \frac{2aU}{\Gamma^2} dR dt + \frac{dR^2}{\Gamma^2} + R^2 (d\theta^2 + \sin^2 \theta d\phi^2)
\]

where \(a = 1/U^t \) and \(\Gamma = (1 + U^2 - \frac{2M}{R})^{1/2} \).

- R & metric coefficients functions of mass & time
- Hydrodynamics solved using operator splitting and artificial viscosity
- Convection: Quasi-Ledoux mixing length theory
Flux-limited diffusion:
Boltzmann equation \implies diffusion equation

$$\frac{1}{a} \frac{\partial G_i}{\partial t} = \nabla \cdot (D_i \nabla G_i)$$

where G_i is angle-integrated energy distribution, D_i is diffusion coefficient.

- 101 logarithmic neutrino energy groups
- $\nu_e, \bar{\nu}_e$: charged- and neutral-current interactions
- $\nu_{\mu,\tau}$: neutral-current interactions
Initial EoS: Wilson & Bowers Equation of State

- Nuclear statistical equilibrium/nuclear burning
- Photon, electron, and pion contributions
- Baryonic EoS:
 - Below ρ_{nuc}, not in NSE
 - Below ρ_{nuc}, in NSE
 - Supranuclear EoS

Later work: use more realistic EoSs
Initial Conditions: Neutron star

Cooled neutron star: result of UND/LLNL supernova model

- $M_{NS} = 1.38M_{\odot}$
- $R_{NS} = 10.6$ km
- Still cooling, $t \sim 40s$
Bondi-Hoyle accretion rate given by:

\[\dot{M} = 4\pi r_B^2 \rho_{SN} \left(v_{SN}^2 + v_{orb}^2 + c_s^2 \right)^{1/2} \]

where \(v_{SN} \sim 10^9 \text{cm/s} \) (\(\gg v_{orb}, c_s \))

\[r_B = \frac{GM_{NS}}{v_{SN}^2 + v_{orb}^2 + c_s^2} \approx 2 \times 10^8 \text{cm} \]

\(\rho_{SN} \) given by model of SN expansion

- Constant accretion rate
Density profile initially homogeneous:

\[\rho_0 = \frac{M_{ej}}{\frac{4}{3} \pi r_{SN}^3} \]

and evolves in times as

\[\rho_{SN} = \frac{\rho_0}{(1 + t/\tau)^3} \]

where \(\tau = r_{SN}/v_{SN} \sim 9\,s \)

Gives accretion rate

\[\dot{M} = \frac{0.014}{(1 + t/9)^3} M_\odot/s \]

Ruffini et al (2014)

\[\begin{array}{c}
0.01 \\
0.008 \\
0.006 \\
0.004 \\
0.002 \\
0.01 \\
0.008 \\
0.006 \\
0.004 \\
0.002 \\
0.01 \\
0.008 \\
0.006 \\
0.004 \\
0.002 \\
\end{array} \]

\[\begin{array}{c}
0 \\
5 \\
10 \\
15 \\
20 \\
25 \\
30 \\
\end{array} \]
Insert matter at NS surface:

- Mass given by accretion rate
- Velocity below shock
 \(\sim 0.1v_{SN} \)
- NSE: Composition matches local matter

Observe effects at photosphere

\(^{a} \) Fryer et al (1996)
Results: Constant accretion rate

Enhanced accretion rate:

\[\dot{M} = 3M_\odot/s \]
Results: Uniform expanding sphere

Accretion rate:

\[\dot{M} = \frac{0.2 M_{\odot}}{(1 + t/9)^3} \]
Results: Neutrino luminosities

Initially: $L_\nu \sim 10^{49}$ ergs/s
Results: X-Ray Emission

Temperature ~ 15 keV
Future work

1. Simulate through BH collapse on longer timescale
 - Utilize realistic accretion rates over ~50 s timescale
Future work

1. Simulate through BH collapse on longer timescale
 - Utilize realistic accretion rates over $\sim 50\text{s}$ timescale

2. Model details of accretion structure
 - Add material at Bondi radius
 - Explore structure of neutrino heated region
Future work

1. Simulate through BH collapse on longer timescale
 - Utilize realistic accretion rates over ~ 50 s timescale

2. Model details of accretion structure
 - Add material at Bondi radius
 - Explore structure of neutrino heated region

3. More realistic EoS
 - Obtain higher NS mass
Conclusions

- **Observations**: indicate distinct emission sources
 - Episode 1: non relativistic expansion of emission photosphere
Conclusions

- **Observations:** indicate distinct emission sources
 - Episode 1: non relativistic expansion of emission photosphere

- **Proposed model:** binary system of massive star and NS
 - Episode 1: Type Ib/c supernova triggers accretion onto companion NS

More to come...
Conclusions

- **Observations:** indicate distinct emission sources
 - Episode 1: non relativistic expansion of emission photosphere

- **Proposed model:** binary system of massive star and NS
 - Episode 1: Type Ib/c supernova triggers accretion onto companion NS

- **Simulations:** Spherically symmetric, fully relativistic simulation of NS accretion
 - Simulated induced gravitational collapse of NS
 - Produced x-ray photosphere

More to come...
Conclusions

- **Observations:** indicate distinct emission sources
 - Episode 1: non relativistic expansion of emission photosphere

- **Proposed model:** binary system of massive star and NS
 - Episode 1: Type Ib/c supernova triggers accretion onto companion NS

- **Simulations:** Spherically symmetric, fully relativistic simulation of NS accretion
 - Simulated induced gravitational collapse of NS
 - Produced x-ray photosphere

- More to come...
Thank you!

Thanks to...