Nonlinear electrodynamics: The missing trigger for the formation of astrophysical charged black holes in gravitational core collapse supernovae

Herman J. Mosquera Cuesta

Instituto Federal de Educação, Ciência e Tecnologia, Fortaleza, Ceará, Brazil
ICRANet/Pescara/Italy

100th Anniversary of Ya. B. Zel’dovich
09-14 March, 2014
Minsk, Bielorus
General relativity and charged black holes

What is the problem? How to form an astrophysical charged BH

Maxwell vs. Nonlinear electrodynamics

Nonlinear electrodynamics
- Early XXth Century Approaches
- NLED Back reaction effect: The Solution

Theoretical framework: The Basics
- NLED B-R repulsive dynamics

Pulsar induced vacuum back reaction

Induced magnetization in classical electrodynamics

Making it longer neutralization timescale

Final Discussion: B-field amplification :: Two mechanisms
- Differential Rotation
- Chiral Plasma Instability
Abstract

Theorists of the general theory of relativity contend that in nature there exists electrically charged (Reissner-Nordstrom) black holes, celestial objects which a distant observer would characterize by their mass and charge. Notwithstanding, none astrophysical mechanism has been proved to self-consistently break up the universal global charge neutrality of most cosmic systems. Foundational arguments from nonlinear electrodynamics (NLED) provide a mechanism able to drive the formation of an astrophysical charged black hole upon the gravitational collapse of a massive star. Due to its repulsive action (nonlinear growing of the initial field in a rotating proto-neutron star (P-NS)) NLED allows, as compared to the gravitational timescale ($\Delta T_{\text{grav}} \simeq 1/\sqrt{G \rho_{\text{NS}}} \gtrsim 10^{-4}$ s), to make it longer the timescale for Coulombian (electrostatic) neutralization ($\Delta T \simeq \lambda_{\text{Debye}}/c \lesssim 10^{-20}$ s), which would otherwise take place at the phase transition created inner crust-upper mantle charge separation interface (separatrix), much earlier than the gravitational core collapse would take over. In such stalled charge separation state the aftermath of gravitational collapse of the P-NS inner core can be an astrophysical charged black hole.
Theorists of GR contend:

- **Einstein equations must somehow be realized in nature**
- **Argument: Exact mathematical solutions**
 - Space-time of charged black hole (Reissner-Nordstrom, BH)

Metric (t, r, θ, ϕ Schwarzschild coordinates, signature (+, -, -, -), units $G = c = 1$. $M =$ mass, $Q =$ charge)

\[
ds^2 = \left(1 - \frac{2M}{r} + \frac{Q^2}{r^2}\right)dt^2 - \frac{dr^2}{\left(1 - \frac{2M}{r} + \frac{Q^2}{r^2}\right)} - r^2 d\theta^2 - r^2 \sin^2 \theta d\phi^2, \quad (1)
\]

Most astrophysicists still pose the question:

- **Nature and mechanism able to break up global charge neutrality in astronomical objects?**
 - A few attempts to cope with this puzzle
 - None has conclusively shut off the debate[1].

The issue remains a very open problem in relativistic astrophysics
What is the problem? How to form an astrophysical charged BH

With regard to this tantalizing issue, it worth to quote that in an earlier paper [Mosquera Cuesta etal., Phys. Rev. D67 (2003) 087702] a mechanism inspired in brane-world physics was presented which allows for mass disappearance (electrons, rather than protons, leaking) from the brane to the bulk producing an asymmetry in an otherwise endlessly global neutral (+, -) charge distribution lying on the brane, e.g. a star. As a result, an astrophysical charged black hole may come out by end of a supernova gravitational core collapse. This mass leaking mechanism might have also been at work during the very early universe driving a matter-antimatter primordial asymmetry.
Maxwell theory: Electrodynamics Linear in Lorentz invariants F, G

Fundamental Problems

- Ionized gas: Naive (quantum mechanical) calculation of ground-state energy density yields infinity
- Divergence of the electric field of point charges
- Catastrophic instability of Bohr’s atomic model
- Infinite self-energy of point particles

NLED: Set up of relativistic invariance to prevent divergences in EM

Several approaches:

 (Study case here !!)
- Born-Infeld: Inspired on Special Relativity [3]
- Plebanski: Structurally robust framework (+ Plasma Physics)[4]
- Pagels-Tomboulis: QCD Inspired [?]
Lagrangians \((G = 0 :: \mu, b \text{ const.}):\)

\(a) L^H = -\frac{1}{4} F + \frac{\mu}{4} F^2 + ... \)

\(b) L^B = -\frac{b^2}{2} \left[\left(1 + \frac{F}{b^2} \right)^{1/2} - 1 \right] \leftarrow \left(1 + \frac{v^2}{c^2} \right)^{1/2} \)

\(c) L = \alpha^2 F^2 - \frac{1}{4} F - \frac{\mu^2}{F} + \frac{\beta^2}{F^2} \)

\(d) L = -\gamma^2 \sqrt{1 + \beta F - \alpha^2 F^2} \)
Way outs:
- Setting an upper limit on the electric field strength upon promoting Electron: charged particle of finite radius (see Eq.(3) part b, above).

Applications:
- Cosmological and astrophysical contexts [5]
- Nonlinear optics, high power laser technology and plasma physics [6]
- Chiral plasma instability of electrons: Weak parity-violating electron-capture process in core collapse supernovae [7] ¹

¹ These authors concede not having identified what mechanism helps to enlarge the NS magnetic helicity, though they stress that the original B-field gives a positive feedback to itself, to grow exponentially, being this last the actual chiral instability. In our picture, this nonlinear enlargement of the field is a prove that NLED is doubtless at action inside just-born pulsars.
NLED Back reaction effect: The Solution

NLED features highlighted:

- **EM dynamics in a vacuum** \leftrightarrow sort of repulsive action or **back reaction effect** (i.e. EM field feedback to itself), see Eq.(6)2

- NLED Back reaction (B-R) effect: manifestation of induced magnetization of (quantum) vacuum medium by some acting magnetic field (the one of rotating magnetized neutron star (NS)) — NLED Vacuum friction [8]: EM interactions in ordinary media with M-E Opt properties: Retardation effects create time offset between vacuum induced magnetization and spinning magnetic dipole moment (simplest model of PSRs) [9].

 — Such dynamical state: Medium B-R to Inductor field \rightarrow classical dissipative force

\(^{2}\)Further insights in Ref.[7] in connection to chirality imbalance (asymmetry) of electrons which appears due to self-interaction of the electron, proton and EM field amidst of, in the simplest atom semiclassical model
Theoretical framework

There exists several formulations of NLED:

a) electric permittivity: \(\varepsilon_0 (E, B) \) :: magnetic susceptibility \(\mu_0 (E, B) \)

b) \(L = L(F, G) \), e.g., the power series \(L = \sum_{j,k=0}^{\infty} c_{j,k} F^j G^k \), or

c) 4-dim effective theory from strings, M-theory, or AdS/CFT

Simplest NLED theory \(^3\) : \(S = \int \sqrt{-g} \, L(F, G) \, d^4 x \),

Field equation: By extremalizing \(L(F(\mathbf{A}_\mu)) \) w.r.t. \(\mathbf{A}_\mu \rightarrow (G = 0 :: \)

\[L_F = \frac{dL}{dF} :: \quad L_{FF} = \frac{d^2L}{dF^2} \) \(^4\)

\[\nabla_\nu (L_FF)^{\mu\nu} = 0 : \quad \nabla_\mu F^{\mu\nu} = J^\nu \equiv -\frac{L_{FF}}{L_F} F^{\mu\nu} F_{|\mu}. \] \(^6\)

Plus cyclic (Faraday) identity

\[\nabla_\nu F^{*\mu\nu} = 0 \Leftrightarrow F_{\mu\nu|\alpha} + F_{\alpha\mu|\nu} + F_{\nu\alpha|\mu} = 0. \] \(^7\)
By taking the discontinuities of $F^{\mu\nu}$ Eq. (6) one gets (definitions in Hadamard’s book), and [12, 13] a)

$$L_F f^\mu k^\lambda + 2L_F F^{\alpha\beta} f_{\alpha\beta} F^{\mu\lambda} k^\lambda = 0 ,$$

(8)

+ discontinuity of the Bianchi identity, yields b)

$$f_{\alpha\beta} k_\gamma + f_{\gamma\alpha} k_\beta + f_{\beta\gamma} k_\alpha = 0 .$$

(9)

A scalar relation can be obtained by contracting this equation with $k^\gamma F^{\alpha\beta}$, which yields c)

$$(F^{\alpha\beta} f_{\alpha\beta} g^{\mu\nu} + 2F^{\mu\lambda} f_\lambda^\nu) k^\mu k^\nu = 0 .$$

(10)

Two distinct solutions appear:

1) when $F^{\alpha\beta} f_{\alpha\beta} = 0$, case in which such mode propagates along standard null geodesics, and

2) when $F^{\alpha\beta} f_{\alpha\beta} = \chi$, case in which equations (a8) and (c10) render propagation equation for field discontinuities.
Photons propagate in geodesics \neq background S-T $g_{\mu\nu}$!

$$\left(g^{\mu\nu} - 4 \frac{L_{FF}}{L_F} F^{\mu\alpha} F_\alpha{}^\nu\right) k_\mu k_\nu = 0 . \quad (11)$$

Rather they follow \rightarrow effective metric $\text{Eq.}(11)$ ($F^{\mu\alpha}$)

Now, by taking the derivative \rightarrow

$$k^\nu \nabla_\nu k_\alpha = 4 \left(\frac{L_{FF}}{L_F} F^{\mu\beta} F_\beta{}^\nu \right) k_\mu k_\nu \big|_\alpha . \quad (12)$$

\rightarrow NLED brings in a term acting as a (field retarded self-energy) backreaction force which accelerates (\rightarrow Higher energy \rightarrow Higher pressure) or decelerates photon along its path4

4For astrophysical and cosmological consequences see [5].
— NLED \(L(F) \) produces perfect fluid energy-momentum tensor (E-M) in \(G_{\mu\nu} = T_{\mu\nu} \) \[13\]

\[
T_{\mu\nu} = \frac{2}{\sqrt{-g}} \frac{\delta L(F)}{\delta g^{\mu\nu}} \equiv T_{\mu\nu} = (\rho + p)u_\mu u_\nu - p g_{\mu\nu} .
\] (13)

The left-hand-side of Eq.(13) yields

\[
T_{\mu\nu} = -4L_F F_\mu^\alpha F_\alpha^\nu - Lg_{\mu\nu} .
\] (14)

By equating terms in Eqs.(13, 14), one gets (Maxwell \(L \rightarrow \rho = 3p = \frac{1}{2}(E^2 + B^2) \))

\[
\rho = -L - 4E^2 L_F , \quad p = L + \frac{4}{3}(E^2 - 2B^2)L_F .
\] (15)

\(L + \text{E-M T structure} \rightarrow \text{magnetic fluid: A collection of noninteracting fluids indexed by } k = -, 0, + \rightarrow \text{EoS: } p_k = \left(\frac{4k}{3} - 1 \right) \rho_k \rightarrow \) There is room for EoS to have negative pressure.
Other Lagrangians exhibiting repulsive force (EM field positive feedback to itself):

- **a) a truncated Laurent series** (α, β, μ coupling constants) [13]

 \[
 L = \alpha^2 F^2 - \frac{1}{4} F - \frac{\mu^2}{F} + \frac{\beta^2}{F^2}. \tag{16}
 \]

 Thus, one obtains EoS describing ordinary radiation

 \[
 \rho_1 = -\alpha^2 F^2 = -4\alpha^2 B_s^4 \frac{1}{R^8} \quad \therefore p_1 = \frac{5}{3} \rho_1 \quad \therefore \rho_2 = \frac{1}{4} F = \frac{B_s}{2} \frac{1}{R^4} \quad \therefore p_2 = \tag{17}
 \]

 plus **fluids exerting repulsive action**

 \[
 \rho_3 = \frac{\mu^2}{F} = \frac{\mu^2}{2B_s^2} R^4 \quad \therefore p_3 = -\frac{7}{3} \rho_3 \tag{18}
 \]

 \[
 \rho_4 = -\frac{\beta^2}{F^2} = -\frac{\beta^2}{4B_s^4} R^8 \quad \therefore p_4 = -\frac{11}{3} \rho_4. \tag{19}
 \]
b) Lagrangian (16): purely phenomenological! Possible to regain repulsive dynamics by extending standard Born-Infeld $L(3)$ to [13]

$$L = -\gamma^2 \sqrt{1 + \beta F - \alpha^2 F^2} \quad : \quad b)p + \rho = \frac{\gamma^2 F(1 - 4\alpha^2 \gamma^2 F)}{3\rho}. \quad (20)$$

Check for such a property: Eq.(20-b) \rightarrow field transition value:

$F \equiv F_{\text{trans}} \quad : \quad \rho + p > 0 \text{ for } F < F_{\text{trans}}, \text{ while } \rho + p < 0 \rightarrow$ (violation of SEC!) for $F > F_{\text{trans}}$!! (see details in [13])

$L(20)$ produces repulsive dynamics: Property looked for to keep in a stalled state the P-NS charge separatrix \rightarrow gravitational core collapse can take over!!

E-M T conservation preserves Gauss law: $B = \frac{B_s}{R_{\text{NS}}^2}$: High energy astrophysics: \rightarrow B-field of nascent or glitching pulsars [14, 9], e.g. Eq.(11) in [7], or in any P-NS structural rearrangement, usually a catastrophic phase transition [15, 9].
Let us turn back to the study case: a P-NS core collapsing in a SN

- EoS feature: decidedly attractive \(p = -\rho! \) \(\rightarrow \) onset of P-NS phase transition (PT) \(\rightarrow \) keeping stalled the charge separation state

- Characteristic timescale for Coulombian neutralization can grow longer!! (B-field positive exponential self-interaction) [7], \(\rightarrow \) gravitational core collapse can take over ending up in a charged BH

- Such NLED repulsion also prevents overlaying crust to plunge onto the core.

- Bunch of astrophysical mechanisms for this to happen: [15, 9, 16, 17, 18]. For instance: “separatrix during gravitational core collapse” [19]

- This astrophysical stage: Prelude of formation of charged BH [19]. Huge amount of work (realistic characterization) on structural configuration of static, rotating and collapsing NSs [16, 17, 18, 20]

- Indeed, the P-T may transiently produce hybrid star or quark star [15], before ending up by forming a charged BH
Vacuum Induced Magnetization (VIM)

Classical electrodynamics [22] defines magnetization (magnetic dipole moment per volume) as \(F = 2(\varepsilon_0 E^2 - \frac{B^2}{\mu_0}) :: E = 0 \rightarrow F = -2\frac{B^2}{\mu_0} \)

\[
H = -\frac{\partial L}{\partial B} = \frac{B}{\mu_0} - m_{br} .
\] (21)

Vacuum induced magnetization (VIM :: the response \(m_{br} \) to PSR dipole B-field action):

a) Born-Infeld in Eq.(3),

\[
\frac{\partial L^B_I}{\partial B} = \left(\frac{1}{\sqrt{1 - \frac{2B^2}{b^2\mu_0}}} \right) \frac{B}{\mu_0} :: m_{br}\bigg|_I^B = \left(\frac{1}{2\sqrt{1 - \frac{2B^2}{b^2\mu_0}}} \right) \frac{B}{\mu_0} \] (22)

b) Heisenberg-Euler in Eq.(3)

\[
\frac{\partial L^H_E}{\partial B} = \frac{B}{\mu_0} - 4\mu\left(\frac{B^2}{\mu_0} \right) \frac{B}{\mu_0} :: m_{br}\bigg|_E^H = 4\mu\left(\frac{B^2}{\mu_0} \right) \frac{B}{\mu_0} \] (23)
Vacuum Induced Magnetization (VIM) — Continued

c) extended Born-Infeld :: $L_F = -\frac{\gamma^2}{2} \left(\frac{\beta - 2\alpha^2 F}{\sqrt{1 + \beta F - \alpha^2 F^2}} \right)$,

$$\frac{\partial L^{B-I}_{Ext}}{\partial B} = -\frac{\gamma^2}{2} \left(\frac{-4\beta - 16\alpha^2 \frac{B^2}{\mu_0}}{\sqrt{1 - 2\beta \frac{B^2}{\mu_0} - 4 \frac{\alpha^2}{\mu_0^2} B^4}} \right) \frac{B}{\mu_0} \cdots$$

$$m_{br}|_{B-I_{Ext}} = \left(\frac{8\alpha^2 \gamma^2 \frac{B^2}{\mu_0}}{\sqrt{1 - 2\beta \frac{B^2}{\mu_0} - 4 \frac{\alpha^2}{\mu_0^2} B^4}} \right) \frac{B}{\mu_0}. \tag{24}$$

Eq.(23) can be compared to Eq.(6) in Ref.[8] computation up to α

From Eqs.(22, 23, 24), VIM as functional \mathcal{F} of P-NS external field reads

$$m_{br} = \mathcal{F} \left(\frac{B}{\mu_0} \right) \bigg| \frac{B}{L \mu_0}. \tag{25}$$
Collapse theory: some pre-SN stellar cores can rotate near Keplerian equatorial break-up frequency: $\Omega_K \geq \left(\frac{2}{3} \frac{G_{N} M}{R^3}\right)^{1/2} \rightarrow P_K \sim 0.6 \text{ s}$, after core bounce

Moreover, submillisecond PSRs spinning at $\Omega \sim 1122$ Hz do exist [23]. Thus, $P \rightarrow \frac{\Omega R}{c} \ll 1$ indicates the (spin) region where VIM is at work!

- P-NS: m magnetic dipole moment, R radius and B_s surface B-field ($B_s \simeq \frac{\mu_0 m}{4\pi R^3}$:: $m = \|m\|$) \rightarrow dipole B-field leading term reads [22]

$$B(r,t) \simeq \frac{\mu_0}{4\pi} \left[\frac{3r(m(t - \frac{r}{c}) \cdot r)}{r^5} - \frac{m(t - \frac{r}{c})}{r^3} \right].$$ (26)

The term $t - \frac{r}{c}$ in m accounts for retardation effects.
At point \(r \) the vacuum B-R induced magnetic moment reads (its origin can be traced back to Eq.(6):

\[
\nabla_\mu F^{\mu\nu} = J^\mu, \quad J^\mu = J_{\text{ind}}^\mu + J_{\text{ext}}^\mu = -\frac{L_{FF}}{L_F} F^{\mu\nu} F_{\nu}, \quad \text{i.e. even if} \quad J_{\text{ext}}^\mu = 0, \quad \text{induced current stems from field feedback on itself}
\]

\[
dm_{br}(r,t) = \left[\mathcal{F} \left(\frac{B}{\mu_0} \right) \right]_{I}^{B}, \left[\mathcal{F} \left(\frac{B}{\mu_0} \right) \right]_{E}^{H}, \left[\mathcal{F} \left(\frac{B}{\mu_0} \right) \right]_{\text{Ext}}^{B-I} \mathbf{B}(r,t) \, dV(r, \theta, \phi)
\]

\text{(27)}

with \(dV = r^2 \sin \theta \, dr \, d\theta \, d\phi \), \((r, \theta, \phi) \) :: \((x, y, z)\) coordinates

At time \(t + \frac{r}{c} \) : B-field \(dB_{br} \) produced by \(dm_{br}(r,t) \) at PSR center \(r \)

\[
dB_{br}(0,t + \frac{r}{c}) \simeq \frac{\mu_0}{4\pi} \left[\frac{3r(dm_{br}(r,t) \cdot r)}{r^5} - \frac{dm_{br}(r,t)}{r^3} \right]. \quad \text{(28)}
\]

This VIM interacts with P-NS spinning magnetic dipole moment by dissipating energy
Quantum Vacuum can ever be thought of as an ordinary medium! Classical electrodynamics rate of energy lost: [22] (unit vector $\mathbf{u}_z \parallel \Omega_z$:: $\Omega = \frac{2\pi}{P}$ rotation frequency)

$$\dot{d}E_{br} = - \left(\mathbf{m}(t + \frac{r}{c}) \times dB_{br}(0,t + \frac{r}{c}) \right) \Omega \cdot \mathbf{u}_z . \quad \text{(29)}$$

Integration: star radius to infinity (averaging over periods: P) Eq. (29) yields

$$\dot{E}_{br} = \int_{R}^{\infty} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2\pi} \langle d\dot{E}_{br} \rangle_P . \quad \text{(30)}$$
For the moment, let us focus on the study case: à la Heisenberg-Euler: Eq.(3)

- For P-NS Ref.[21] showed that this Lagrangian leads to
 \[p = \frac{1}{3} \rho - \rho_\gamma, \quad \text{with} \quad \rho_\gamma = \frac{16}{3} c_1 B^4. \]
 For supercritical fields \(\rho_\gamma \) dominates so that the EoS becomes negative \(\rightarrow \) the condition to provide repulsive dynamics is reached!!

- In connection to Eq.(30), for nearly overcritical B-fields Ref. [8] showed that
 \[\dot{E}_{br} \simeq \alpha \left(\frac{18\pi^2}{45} \right) \frac{\sin^2 \theta}{\mu_0 c} \frac{R^4}{B_c^2 P^2} B_s^4, \] \hspace{1cm} (31)

 while à la Maxwell the energy dissipation rate reads [9]
 \[\dot{E}_{Maxw} = \left(\frac{128\pi^5}{3} \right) \frac{\sin^2 \theta}{\mu_0 c^3} \frac{R^6}{P^4} B_s^2. \] \hspace{1cm} (32)
A confrontation of these energy losses hints at fundamental changes w.r.t. the method currently in use to estimate the B-field strength of pulsars [14, 9].

B-R energy lost depends on B_s^4, while standard one grows as B_s^2. Astronomers measure the luminosity, flux, spin rate and spin down of PSRs.

B-field strength on PSR surface is inferred by assuming that pulsar EM power release is explained by classical dipole model [14, 9].

To correctly infer B-field strength of extremely magnetized, slow pulsars: Take into account B-R or vacuum frictional effects otherwise such fields will be severely underestimated, e.g. the “magnetars” [8].

Let us now proceed to estimate B-field strength needed to delay the electrostatic neutralization process at the separatrix.
Making it longer the (+, -) neutralization timescale

- The NS total mechanical energy reads: \(E_{NS} = E_{grav} + E_{spin} \)
- Estimate how much longer the electrostatic timescale can go on by equating it to the timescale dictated by gravity:
 \[
 \Delta T^{NLED} = \frac{\dot{E}_{NS}}{\dot{E}_{Maxw} + \dot{E}_{br}} \iff \Delta T^{grav} = \frac{1}{\sqrt{G\rho}} \gtrsim 10^{-4} \text{ s}
 \]
- Such a relation can be cast in the form
 \[
 \frac{1}{\sqrt{G\rho}} = \alpha \left(\frac{18\pi^2}{45} \right) \frac{G M_{NS}^2}{R_{NS}^5} + \frac{2}{5} M_{NS} \Omega_{NS}^2 R_{NS}^2 + \left(\frac{128\pi^5}{3} \right) \frac{B_s^4}{\mu_0 c^2 P^4} B_s^2
 \]

By solving for \(B_s \) this fourth order quadratic equation (fiducial period \(P \sim 1 \text{ ms} [23] \) and \(\sin \theta = 1, \frac{1}{2} \)), one obtains the B-field strength at separatrix: \(B_s \sim 10^{18-19} \text{ G} \), which is several orders of magnitude higher than any electric field that may appear at the separatrix, e.g. as in Ref.[20].
The state-of-the-art in astrophysics is called for next, see [14, 9].

- **A newly-born NS may undergo vigorous convection** during the first 30-60 s. **If it spins differentially extremely fast** \(P \lesssim 1 \text{ ms} \) **conditions are created for the \(\alpha - \Omega \) dynamo to get into action**! (It may survive depletion due to turbulent diffusion).

- **Under collapse conditions**, B-fields \(B \sim 10^{17-18} \left(\frac{P}{1 \text{ ms}} \right) \) G may be generated as long as the differential rotation is dragged out by the growing magnetic stresses. For this process to efficiently operate the ratio: spin rate \(P \)/convection overturn timescale \(\tau_{\text{conv}} \), the Rossby number \(R_0 \), should be \(R_0 \leq 1 \).

- Then, an ordinary dipole \(B_{\text{dip}} \sim [10^{12} - 10^{13}] \) G can be built by incoherent superposition of small dipoles of characteristic size \(\lambda \sim [\frac{1}{3} - 1] \) km \(\rightarrow \) surface saturation strength \(B_{\text{sat}} = (4\pi \rho)^{1/2} \lambda / \tau_{\text{conv}} \sim 10^{16-17} \) G can be reached, as very recently proved by [24]. Indeed, the dipole B-field approximation \(\rightarrow \) induced magnetization \(B_{\text{mag}}^{\text{ind}} \sim 10^{20} \) G can be reached at the very km-scale deep inner core.
The here purported timescale could be made even more longer by large magnetic helicity \(\mathcal{H} = \int \mathrm{d}x \mathbf{A} \cdot \mathbf{B} \) \(\mathbf{A} \) vector potential) from large chiral imbalance of electrons (plasma instability) caused by exponential growing of P-NS initial B-field in the parity-violating weak process of deleptonization during the SN [7].

CONCLUSION:

At P-T interface, fields this high surely drive the star to collapse \(\rightarrow \) charged BH, and to à la Schwinger instability of the vacuum, triggering a sort of second SN explosion. The signature of this vacuum explosion can be similar to that from r-process due to P-NS crust abundance of neutrons, and would produce a late time bump or re-brightening in the SN light curve.

Picture realization: Many astrophysical contexts: Models of gamma-ray bursts (GRBs): The very central engine. Reissner-Nordstrom BH: can afford polarization and à la Schwinger pair creation [25], and full relativistic hydrodynamics and light curve evolution characterizing GRBs.
That’s all for the time being
!!! Thanks for your kind attention !!!
Final Discussion: B-field amplification :: Two mechanisms

Chiral Plasma Instability

Final Discussion: B-field amplification :: Two mechanisms

Chiral Plasma Instability

J. Hadamard, “Leçons sur la propagation des ondes et les equations de l’Hydrodynamique” (Hermann, Paris 1903)

Final Discussion: B-field amplification :: Two mechanisms

Chiral Plasma Instability

Final Discussion: B-field amplification :: Two mechanisms

Chiral Plasma Instability

R. Ruffini, L. Vitagliano, S.-S Xue, Phys. Lett. B 573, 33 (2003), and Refs. therein

Y. B. Zeldovich, A. A. Starobinsky, “Particle production and vacuum polarization in an anisotropic gravitational field”, Sov. Phys. JETP 34, 1159-1166 (1972)