Sterile neutrino dark matter

Oleg Ruchayskiy

Ecole Polytechnique Fédérale de Lausanne
together with A. Boyarsky, M. Shaposhnikov *et al.*

Second Galileo Xu Guan Qi meeting

July 14, 2010
Dark Matter in the Universe

Extensive evidence for the presence of dark, non-baryonic matter, dominating the mass balance of the Universe at scales above 100 pc.
Dark matter at cosmological scales

- ΛCDM: about 20% of total energy density is in the form of non-baryonic matter

- This dark matter is scale-free (non-interacting, “cold”, …)

- Standard Model neutrinos do not contribute significantly to the Universe mass balance at matter-dominated epoch (CMB, LSS, …)
Dark matter – a fundamental physics problem

- Is evidence for missing mass convincing? — yes
- If dark matter is made of particles – what are they?

Dark matter particles are not part of the Standard Model of particle physics
Why (and where) we expect new physics?

- **Dark matter** (not a SM particle!)
 - particles with weak cross-section will have correct abundance \(\Omega_{\text{DM}} \) ("WIMP miracle"). **New scale** \(\sim 1 \text{ TeV} \)
 - Axions. **New scale** \(10^{10} - 10^{12} \text{ GeV} \).

- **Baryon asymmetry of the Universe**: what ensured that for each \(10^{10} \) anti-protons there was \(10^{10} + 1 \) proton in the early Universe?
 - **Sakharov conditions**: CP-violation; B-number violation; out-of-equilibrium particles.
 - Out-of-equilibrium decay of heavy lepton \(\chi \) at temperatures \(M_{\text{EW}} < T_{\text{decay}} < M_{\chi} \) produces correct baryon-to-entropy ratio for \(M_{\chi} > 10^{11} \text{ GeV} \) – **new energy scale**

- **Fine-tuning problems**: CP-problem, hierarchy problem, grand unification, cosmological constant problem
Hierarchy problem

Quantum corrections to the Higgs mass:

- Masses of fermions are provided by the Higgs field
- Fermion corrections to the Higgs mass are proportional to their mass M_f^2.
- Contributions from heavy fermions ($M_f \gg 100$ GeV) would make Higgs mass heavy $M_H \sim M_f$
- To keep Higgs boson light, one should fine-tune the parameters of the model to cancel fermions’ contribution by that of Higgs
Build a model that resolves several BSM phenomena within its framework. Worry about fine-tunings later
Experiments on neutrino oscillations determined two mass differences between neutrino mass states.

Sterile (right-handed) neutrinos provide the simplest and natural extension of the Minimal SM that describe oscillations.

Make leptonic sector of the SM symmetric.
See-saw Lagrangian

Add right-handed neutrinos N_I to the Standard Model

$$\mathcal{L}_{\text{right}} = i \tilde{N}_I \phi N_I + \left(\begin{array}{c} \tilde{\nu}_e \\ \tilde{\nu}_\mu \\ \tilde{\nu}_\tau \end{array} \right) \left(\begin{array}{c} F \langle H \rangle \\ N_1 \\ N_2 \\ \ldots \end{array} \right) + \left(\begin{array}{c} N_I^c \\ N_2^c \\ \ldots \end{array} \right) \left(\begin{array}{c} M \\ \ldots \end{array} \right)$$

\[\nu_\alpha = \tilde{H} L_\alpha, \text{ where } L_\alpha \text{ are left-handed lepton doublets} \]

- Active masses are given via usual **see-saw formula**:

 \[(m_\nu) = -M_D \frac{1}{M_I} M_D^T \quad ; \quad M_D \ll M_I \]

- Neutrino mass matrix – **7 parameters**. Dirac+Majorana mass matrix – **11 (18) parameters** for 2 (3) sterile neutrinos. **Two** sterile neutrinos are enough to fit the neutrino oscillations data.

 Scale of Dirac and Majorana masses is not fixed!
Some general properties of sterile neutrino

- Sterile neutrinos are **decaying particles**

<table>
<thead>
<tr>
<th>$M_I < 1$ MeV</th>
<th>$M_I > 1$ MeV</th>
<th>$M_I > 150$ MeV</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_I \rightarrow \nu \nu \bar{\nu}$</td>
<td>$N_I \rightarrow \nu e^+ e^-$</td>
<td>$N_I \rightarrow \pi^\pm e^\mp$</td>
<td>$N_I \rightarrow \pi^0 \nu$</td>
</tr>
</tbody>
</table>

- Short lifetime – decay in the early Universe. Can have CP-violating phases. Leptogenesis? Affects BBN?

- Lifetime $\tau \propto \theta_I^{-2} M_I^{-5}$. (Cosmologically) long lifetime – dark matter candidate?

- **Mixing angle** θ_I:

$$\theta_I^2 = \sum_{\alpha=e,\mu,\tau} \frac{|F_{\alpha I}|^2 v^2}{M_I^2} \ll 1$$
The scale of right-handed masses?

“Popular” choices of see-saw parameters

- Yukawa couplings $F_{\alpha I} \sim 1$, i.e. Dirac masses $M_D \sim M_t$. Majorana masses $M_I \sim 10^{15}$ GeV.

- Attractive features:
 - Provides a mechanism of baryon asymmetry of the Universe
 - Scale of Majorana masses is possibly related to GUT scale

- This model **does not provide the dark matter particle**

- Alternative? Choose Majorana masses M_I of the order of masses of other SM fermions and make Yukawa couplings small
Neutrino minimal Standard Model (νMSM)

The model solves several *beyond the Standard Model problems*

✓ ... explains neutrino oscillations

✓ ... matter-antimatter asymmetry of the Universe

✓ ... provides a viable dark matter candidate that can be cold, **warm** or **mixed** (cold+warm)
Choosing parameters of the νMSM

- If $M_{2,3} \sim 100$ MeV – 20 GeV and $\Delta M_{2,3} \ll M_{2,3}$, νMSM explains **baryon asymmetry** of the Universe.

- Neutrino experiments can be explained within the same choice of parameters.

Asaka, Shaposhnikov '05

Constraints from primordial synthes of light elements

No matter-antimatter asymmetry

No neutrino oscillations
Parameters of the third sterile neutrino?

- The third sterile neutrino can couple to the SM arbitrarily weakly. **Dark matter candidate?**

- Any DM candidate must be
 - Produced in the early Universe and have correct relic abundance
 - Be stable or cosmologically long-lived
 - Very weakly interacting with electromagnetic radiation ("dark")
 - Allow to explain the observed large scale structure
The model-independent lower limit on the mass of fermionic DM.

The smaller is the DM particle mass – the bigger is the number of particles within some region of phase-space density (defined by velocity dispersion σ and size R).

For fermions Pauli principle restricts number of fermions.

Objects with highest phase-space density – dwarf spheroidal galaxies – lead to the lower bound on the DM mass $m > 300$ eV.

New dSph’s are very dense $Q_{obs} = 10^4 - 10^5 \, M_\odot \frac{\text{kpc}^{-3} \left[\text{km} \, \text{s}^{-1} \right]^{-3}}{}$.

Bound on any fermionic DM improved to become $M_s > 0.41 \, \text{keV}$.

Can be further improved if production model of sterile neutrinos is specified.
How sterile neutrino DM is produced?

- Phenomenologically acceptable values of θ_1 are so small, that the rate of this interaction Γ of sterile neutrino with the primeval plasma is much slower than the expansion rate ($\Gamma \ll H$)
 \Rightarrow Sterile neutrino are never in thermal equilibrium

- **Simplest scenario:** sterile neutrino in the early Universe interact with the rest of the SM matter via *neutrino oscillations*:

 \[
 e^- \rightarrow e^+ \quad \text{(Neutralino)} \quad q \rightarrow q' \quad \text{(Wino)}
 \]

 \[
 \nu \rightarrow \bar{\nu} \quad N_S \quad e^\pm \rightarrow \bar{\nu} \quad N_S
 \]

- Production is sharply peaked at

 \[
 T_{\text{max}} \simeq 130 \left(\frac{M_s}{\text{keV}} \right)^{1/3} \text{ MeV}
 \]
Production through oscillations

- Sterile neutrinos have non-equilibrium spectrum of primordial velocities, roughly proportional to the spectrum of active neutrinos

\[f_s(p) \propto \frac{\theta^2}{\exp\left(\frac{p}{T_\nu}\right) + 1} \]

- Their amount less than that of active:

\[\Omega_s h^2 \propto \theta^2 \frac{M_s}{94 \text{ eV}} \quad \text{recall: SM neutrinos } \Omega_\nu h^2 = \sum \frac{m_\nu}{94 \text{ eV}} \]

- Average momentum \(\langle p_s \rangle \sim \langle p_\nu \rangle \gg M_s \) – sterile neutrinos are produced relativistic
The presence of lepton asymmetry makes this production much more effective – **resonant production**

To be effective this mechanism requires lepton asymmetry of the order \(\frac{n_\nu - n_\bar{\nu}}{s} \gtrsim 10^{-6} \) (compare with \(\eta_B = \frac{n_b - n_{\bar{b}}}{s} \sim 10^{-10} \))

Typically, one expect the lepton asymmetry to be \(\sim \eta_B \) (sphalerons equilibrate the two)

In the \(\nu \text{MSM} \) one can generate the lepton asymmetry **below** the sphaleron scale thus making it significantly large than \(\eta_B \)

The value of lepton asymmetry can be as large as

\[
L_6 \equiv 10^6 \frac{n_{\nu e} - n_{\bar{\nu} e}}{s} \lesssim 700
\]

(present BBN bound \(L_6^{\text{BBN}} \lesssim 2500 \))
Non-resonant component

Resonant component

\[q = \frac{p}{T_\nu} \]

Laine, Shaposhnikov'08; Boyarsky, O.R., Shaposhnikov'09
Sterile neutrinos are ultra-relativistic at production

DM particles erase primordial spectrum of density perturbations on scales up to the DM particle horizon – free-streaming length

Comoving free-streaming lengths peaks around t_{nr} when $\langle p \rangle \sim m$

Free-streaming horizon determines suppression scale of power spectrum of density perturbations.

An order of magnitude estimate for the free-streaming scale?

$$\lambda_{FS}^{co} \sim 1 \text{ Mpc} \left(\frac{\text{keV}}{M_s} \right) \frac{\langle p_s \rangle}{\langle p_\nu \rangle}$$
Power spectrum of density fluctuations

Current power spectrum $P(k) \left[(h^{-1} \text{Mpc})^3 \right]$ versus Wavenumber $k [h/\text{Mpc}]$ and Wavelength $\lambda [h^{-1} \text{Mpc}]$.

- **Cosmic Microwave Background**
- **SDSS galaxies**
- **Cluster abundance**
- **Weak lensing**
- **Lyman Alpha Forest**

Tegmark & Zaldarriaga, astro-ph/0207047 + updates

Max Tegmark
Univ. of Pennsylvania
max@physics.upenn.edu
TAUP 2003
September 5, 2003
Influence of primordial velocities

$P(k) \left[\text{(Mpc/h)}^3 \right]$ vs $k \left[\text{h/Mpc} \right]$

CDM

WDM
M=2 keV

Oleg Ruchayskiy

STERILE NEUTRINO DM
Power spectrum for sterile neutrinos

![Graph showing the ratio of matter power spectra](image)

- **Comoving wavenumber k [h/Mpc]**
- **Ratio of matter power spectra** $(P(k)/P_{\Lambda CDM}(k))^{1/2}$

- **Markers and Labels**:
 - NRP $M_1=14$ keV
 - NRP $M_1=3$ keV
 - RP $M_1=3$ keV, $L_6=16$
 - CWDM, $F_{wdm}=0.2$

Boyarsky, Lesgourgues, O.R., Viel JCAP, PRL 2009;
Neutral hydrogen in intergalactic medium is a tracer of overall matter density. Scales $0.3h/\text{Mpc} \lesssim k \lesssim 3h/\text{Mpc}$
The Lyman-α method includes

- Astronomical data analysis of quasar spectra
- Astrophysical modeling of hydrogen clouds
- N-body+hydrodynamical simulations of DM clustering at non-linear stage
- Simultaneous fit of cosmological parameters \((\Omega_b, \Omega_M, n_s, h, \sigma_8 \ldots)\). Astrophysical parameters, describing IGM, are not known and should be fitted as well (another 20+ parameters)
- The data: Lyman-α + CMB + maybe LSS \ldots (thousands of data points, sometimes correlated)

Main challenge: reliable estimate of systematic uncertainties
Lyman-\(\alpha\) bounds on CDM+WDM mixture

\[
F_{\text{WDM}} = \frac{\Omega_{\text{WDM}}}{\Omega_{\text{WDM}} + \Omega_{\text{CDM}}}
\]

Lyman-\(\alpha\) allows to restrict the shape of primordial velocity spectrum, rather than free-streaming (for example, a fraction of warm DM \((F_{\text{WDM}})\) for given mass)
Halo substructure with sterile neutrino DM

work in progress
Halo substructure with CDM
PRELIMINARY: **Aq-A-2 halo** in CDM and CDM+WDM simulations (Gao, Theuns, Frenk, O.R., ...)

- Simulated CWDM model (right) is fully compatible with the Lyman-\(\alpha\) forest data but provides a structure of Milky way-size halo different from CDM (left)
Lifetime of sterile neutrino DM candidate

- Dominant decay channel for sterile neutrino (for $M_s < 1$ MeV) is $N \to 3\nu$.

- Life-time $\tau = 5 \times 10^{26}\text{sec} \times \left(\frac{\text{keV}}{M_s}\right)^5 \left(\frac{10^{-8}}{\theta^2}\right)^2$

- Subdominant radiative decay channel
 - Photon energy: $E_{\gamma} = \frac{M_s}{2}$
 - Radiative decay width:
 $$\Gamma_{\text{rad}} = \frac{9 \alpha_{\text{EM}} G_F^2}{256 \cdot 4\pi^4} \sin^2(2\theta) M_s^5$$

- Sterile neutrino DM is not completely dark. Its decay signal can be searched for in the spectra of astrophysical objects.
A DM column density

- Flux from DM decay:

\[
F_{\text{DM}} = \Gamma_{\text{rad}} \frac{E_\gamma}{M_s} \int_{\text{fov cone}} \frac{\rho_{\text{DM}}(\vec{r})}{4\pi|\vec{D}_L + \vec{r}|^2} d^3\vec{r} \approx \frac{\Gamma_{\text{rad}} \Omega_{\text{fov}}}{8\pi} S
\]

- DM column density

\[
S = \int_{\Omega_{\text{fov}}} \rho_{\text{DM}}(r) dr
\]

– integral along the line-of-sight, averaged within the instrument’s field-of-view
Decay signal from MW-sized galaxy

Simulations: B.Moore et al. 2005
Bounds on decaying DM from various objects

- MW (HEAO-1) Boyarsky, O.R. et al. 2005
- Coma and Virgo clusters Boyarsky, O.R. et al.
- Bullet cluster Boyarsky, O.R. et al. 2006
- LMC+MW(XMM) Boyarsky, O.R. et al. 2006
- MW Riemer-Sørensen et al.; Abazajian et al.
- MW (XMM) Boyarsky, O.R. et al. 2007
- M31 Watson et al. 2006; Boyarsky et al. 2007

M31

Oleg Ruchayskiy

STERILE NEUTRINO DM
Restrictions on life-time of decaying DM

Results of almost 20 published works.
Window of parameters of sterile neutrino DM

\[\sin^2(2\theta) \]

\[\Omega > \Omega_{DM} \]

\[\Omega < \Omega_{DM} \]

DM mass [keV]
Window of parameters of sterile neutrino DM

\[
\sin^2(2\theta) \quad M_{\text{DM}} [\text{keV}]
\]

\[
\begin{align*}
10^{-16} & \quad 10^{-14} & \quad 10^{-12} & \quad 10^{-10} & \quad 10^{-8} & \quad 10^{-6} \\
0.3 & \quad 1 & \quad 10 & \quad 100
\end{align*}
\]

\[\Omega > \Omega_{\text{DM}}\]

\[\Omega < \Omega_{\text{DM}}\]

Asaka, Laine, Shaposhnikov'06

Laine, Shaposhnikov'08

\[
NRP
\]

BBN limit: \[L_6^{\text{BBN}} = 2500\]

\[L_6^{\text{max}} = 700\]

Oleg Ruchayskiy

STERILE NEUTRINO DM
Window of parameters of sterile neutrino DM

\[\sin^2(2\theta) \]

\[M_{\text{DM}} [\text{keV}] \]

Excluded from X-rays

Window of parameters of sterile neutrino DM

Boyarsky, Ruchayskiy et al. 2005-2008

$\sin^2(2\theta)$

M_{DM} [keV]

Excluded from X-rays

Exceeds PSD of degenerate Fermi gas

Oleg Ruchayskiy

STERILE NEUTRINO DM
Window of parameters of sterile neutrino DM

\[\sin^2(2\theta) \]

\(M_{DM} \) [keV]

\(10^{-16} \)
\(10^{-14} \)
\(10^{-12} \)
\(10^{-10} \)
\(10^{-8} \)
\(10^{-6} \)

Excluded from X-rays

Excluded from PSD evolution arguments

Boyarsky, Ruchayskiy et al. 2005-2008

Boyarsky, O.R., Iakubovskyi, 2008
Sterile neutrino DM in the νMSM

Phase-space density constraints

$\Omega_{N_1} > \Omega_{DM}$

$\Omega_{N_1} < \Omega_{DM}$

X-ray constraints

$\sin^2(2\theta_1)$

M_1 [keV]

10^{-15} 10^{-14} 10^{-13} 10^{-12} 10^{-11} 10^{-10} 10^{-9} 10^{-8} 10^{-7} 10^{-6}

$\Omega_{N_1} > \Omega_{DM}$

$\Omega_{N_1} < \Omega_{DM}$

B_{BBN} limit: $L_6^\text{BBN} = 2500$

$L_6^\text{max} = 700$

$L_6 = 70$

$L_6 = 25$

Oleg Ruchayskiy

STERILE NEUTRINO DM

39/42
Astrophysical searches for decaying DM

- Sterile neutrino DM candidates are hard to search in labs

- The decaying dark matter is a unique all-sky signal, with variations, correlated with the distribution of galaxies/galaxy clusters

- If any candidate decay line is found, the distribution of its intensity over the sky can be predicted and checked against observations.

- This makes the search for decaying dark matter a direct detection experiment

- New instruments (EDGE/XENIA) – White paper for ESA’s call for Fundamental physics roadmap
Improved bounds on DM decay

Excluded from X-ray observations

$\Omega_s > \Omega_{DM}$

$\Omega_s < \Omega_{DM}$

Excluded from Lyman-α analysis

Probed by XENIA

$\sin^2(2\theta)$

$M_s [\text{keV}]$

10^{-16} 10^{-15} 10^{-14} 10^{-13} 10^{-12} 10^{-11} 10^{-10} 10^{-9} 10^{-8} 10^{-7}

10^{-16} 10^{-15} 10^{-14} 10^{-13} 10^{-12} 10^{-11} 10^{-10} 10^{-9} 10^{-8} 10^{-7}
Probing other sterile neutrinos

<table>
<thead>
<tr>
<th>M_2 [GeV]</th>
<th>10^{-13}</th>
<th>10^{-12}</th>
<th>10^{-11}</th>
<th>10^{-10}</th>
<th>10^{-9}</th>
<th>10^{-8}</th>
<th>10^{-7}</th>
<th>10^{-6}</th>
<th>10^{-5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ^2_2</td>
<td>0.1</td>
<td>1</td>
<td>10^2</td>
<td>10^3</td>
<td>10^4</td>
<td>10^5</td>
<td>10^6</td>
<td>10^7</td>
<td>10^8</td>
</tr>
</tbody>
</table>

No matter-antimatter asymmetry

Constraints from primordial synthesis of light elements

NA62 experiment (CERN)

No neutrino oscillations

Oleg Ruchayskiy
Main conclusion: sterile neutrino is a viable dark matter candidate, satisfying all existing astrophysical and cosmological bounds.
THANK YOU FOR YOUR ATTENTION
Example: Spectral feature in Willman 1

[Loewenstein & Kusenko [0912.0552]]

68%, 90% and 99% confidence intervals

Oleg Ruchayskiy
STERILE NEUTRINO DM
Checking for DM line in dSphs

- $E_{\text{line}} = (2.51 \pm 0.07) \text{ keV}$
 - $2.44 \text{ keV} - 2.58 \text{ keV (1}\sigma\text{)}$
 - $2.30 \text{ keV} - 2.72 \text{ keV (3}\sigma\text{)}$

- Line flux $F_{\text{Wil1}} = (3.53 \pm 1.95) \times 10^{-7} \text{ photons/cm}^2/\text{sec (68}\% \text{ CL)}$

- No significant lines were found in spectra of dSphs

- We obtain the following exclusions

<table>
<thead>
<tr>
<th></th>
<th>$2.44 - 2.58 \text{ keV}$</th>
<th>$2.30 - 2.72 \text{ keV}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fornax dSph:</td>
<td>5.1σ</td>
<td>3.3σ</td>
</tr>
<tr>
<td>Sculptor dSph:</td>
<td>3.0σ</td>
<td>2.5σ</td>
</tr>
<tr>
<td>Fornax + Sculptor</td>
<td>5.9σ</td>
<td>4.1σ</td>
</tr>
</tbody>
</table>

- In case of the DM decay origin of the line we were expecting about 4σ detection from Fornax. However adding the line makes fit worse.
Checking for DM line in M31

Exclusion from Fornax + Sculptor dSph:

<table>
<thead>
<tr>
<th>2.44 – 2.58 keV</th>
<th>2.30 – 2.72 keV</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9σ</td>
<td>4.1σ</td>
</tr>
</tbody>
</table>

Andromeda galaxy

- Diffuse spectrum above 2 keV is a featureless power law

<table>
<thead>
<tr>
<th>2.44 – 2.58 keV</th>
<th>2.30 – 2.72 keV</th>
</tr>
</thead>
<tbody>
<tr>
<td>M31, 1kpc < R < 3kpc: 22.7σ</td>
<td>20.1σ</td>
</tr>
<tr>
<td>M31, 5 kpc off-center: circle radius 3 kpc 10.4σ</td>
<td>10.4σ</td>
</tr>
<tr>
<td>M31, both regions 24.9σ</td>
<td>23.3σ</td>
</tr>
</tbody>
</table>

- Extremely significant exclusion from central 8 kpc of Andromeda!

- All bounds are based on the conservative DM estimate from [Widrow & Dubinski'05]!
Checking for DM line in M31

- Exclusion from Fornax and Sculptor dSphs:
 \[
 \begin{array}{c|c}
 2.44 - 2.58 \text{ keV} & 2.30 - 2.72 \text{ keV} \\
 5.9\sigma & 4.1\sigma \\
 \end{array}
 \]

- Exclusion from **central 8 kpc of Andromeda**:
 \[
 \begin{array}{c|c|c}
 2.44 - 2.58 \text{ keV} & 2.30 - 2.72 \text{ keV} & \text{DM model} \\
 24.9\sigma & 23.3\sigma & [\text{Widrow \\& Dubinski’05}] \\
 7.9\sigma & 6.9\sigma & [\text{Corbelli et al.’09}] \\
 \end{array}
 \]

1001.0644
Checking for DM line in M31

In the final version of the paper we processed observations in the region 10 – 20 kpc
Summary of exclusions

<table>
<thead>
<tr>
<th></th>
<th>Minimal DM amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Corbelli et al., Burkert profile, (r_B = 28) kpc, (M/L = 8))</td>
</tr>
<tr>
<td>68% CL</td>
<td>2.44 keV – 2.58 keV</td>
</tr>
<tr>
<td>99% CL</td>
<td>2.30 keV – 2.72 keV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>68% CL</th>
<th>99% CL</th>
<th>68% CL</th>
<th>99% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>M31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>within 8 central kpc</td>
<td>24.9σ</td>
<td>23.3σ</td>
<td>7.9σ</td>
<td>6.9σ</td>
</tr>
<tr>
<td>M31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10–20 kpc off-center</td>
<td>12.0σ</td>
<td>10.7σ</td>
<td>11.7σ</td>
<td>10.6σ</td>
</tr>
<tr>
<td>All M31 obs.</td>
<td>28.2σ</td>
<td>26.2σ</td>
<td>13.6σ</td>
<td>13.2σ</td>
</tr>
<tr>
<td>All M31 + Fornax</td>
<td>29.0σ</td>
<td>26.7σ</td>
<td>15.2σ</td>
<td>14.0σ</td>
</tr>
</tbody>
</table>

- The DM origin of the spectral feature in Willman 1 at \(\sim 2.5 \) keV is excluded with **14σ** significance!
Parameters of Aquarius simulation

<table>
<thead>
<tr>
<th>Name</th>
<th>m_p</th>
<th>ϵ</th>
<th>N_{hr}</th>
<th>N_{lr}</th>
<th>N_{50}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aq-A-1</td>
<td>1.712×10^3</td>
<td>20.5</td>
<td>4,252,607,000</td>
<td>144,979,154</td>
<td>1,473,568,512</td>
</tr>
<tr>
<td>Aq-A-2</td>
<td>1.370×10^4</td>
<td>65.8</td>
<td>531,570,000</td>
<td>75,296,170</td>
<td>184,243,536</td>
</tr>
<tr>
<td>Aq-A-3</td>
<td>4.911×10^4</td>
<td>120.5</td>
<td>148,285,000</td>
<td>20,035,279</td>
<td>51,391,468</td>
</tr>
</tbody>
</table>

Basic parameters of the Aquarius simulations. m_p is the particle mass, ϵ is the gravitational softening length, N_{hr} is the number of high resolution particles, and N_{lr} the number of low resolution particles filling the rest of the volume. $M_{200} = 1.839 \times 10^{12}M_\odot$ is the virial mass of the halo, defined as the mass enclosed in a sphere with mean density 200 times the critical value. $r_{200} = 245$ kpc gives the corresponding virial radius. $M_{50} = 2.524 \times 10^{12}M_\odot$. Finally, N_{50} gives the number of simulation particles within $r_{50} = 433$ kpc.

Springel et al. '08

Back to CDM+WDM halo simulation