Final Stages of a Neutron Star Binary System

Fernanda G.Oliveira12, Jorge A. Rueda13, Remo Ruffini13, Federico Cipolletta1 and Marco Muccino1

1Sapienza University of Rome, P.le Aldo Moro 5, I–00185 Rome, Italy
2Nice Sophia Antipolis University, 28 avenue Valrose, BP 2135, 06103, Nice
3ICRANet, P.zza della Repubblica 10, I–65122 Pescara, Italy

IK meeting 20th July, 2015
1. **Gravitational waves (GWs)**
 - Classical dynamics
 - Effective-one-body formalism

2. **On the fate of neutron star binary mergers**
 - Critical NS mass
 - On the stability of the post-merger core

3. **Short Gamma-ray Bursts**
 - Sub-classification
 - GRB 090227B (Family-2): Baryon load

4. **GWs emission from short GRBs**
 - Signal-to-Noise ratio
 - Detection rate in Ad.LIGO
In 1978, Taylor and Hulse reported that there was a systematic shift in the observed time of periastron relative to that expected if the orbital separation remained constant. The decay of the orbit of this system is exactly the rate predicted by GR and has provided direct evidence that gravitational radiation exists. 1993 Nobel Prize in Physics was awarded for this work.

\[
- \frac{dE_{\text{orb}}}{dt} = \frac{dE_{\text{GW}}}{dt}
\]
Outline

1. Gravitational waves (GWs)
 - Classical dynamics
 - Effective-one-body formalism

2. On the fate of neutron star binary mergers
 - Critical NS mass
 - On the stability of the post-merger core

3. Short Gamma-ray Bursts
 - Sub-classification
 - GRB 090227B (Family-2): Baryon load

4. GWs emission from short GRBs
 - Signal-to-Noise ratio
 - Detection rate in Ad.LIGO
The orbital angular velocity of the binary with components \((M_1, R_1)\) and \((M_2, R_2)\) orbiting each other in a circular orbit of radius \(r\), is given by \(\omega_k = \sqrt{G(M_1 + M_2)/r^3}\), and its total binding energy is,

\[
E_b = -\frac{1}{2} \frac{G M_1 M_2}{r}.
\] (1)

The leading term driving the loss of binding energy via gravitational wave emission is given by

\[
-\frac{dE_b}{dt} = \frac{32}{5} \frac{G^4}{c^5} \frac{(M_1 + M_2)(M_1 M_2)^2}{r^5},
\] (2)

which leads to a decreasing of the separation \(r\) with time and consequently a shortening of the orbital period \(P = 2\pi/\Omega\).

The loss of orbital binding energy by emission of GWs as a function of the frequency \(f\) as from the neutron star system in spiral phase can be written,

\[
\frac{dE_b}{df} = -\frac{1}{3} (\pi G)^{2/3} M^{5/3} f^{-1/3}.
\] (3)

where \(\omega_k = 2\pi f_k = \pi f\) and \(M = (M_1 M_2)^{3/5} / (M_1 + M_2)^{1/5}\) is the called chirp mass.
Outline

1. Gravitational waves (GWs)
 - Classical dynamics
 - Effective-one-body formalism

2. On the fate of neutron star binary mergers
 - Critical NS mass
 - On the stability of the post-merger core

3. Short Gamma-ray Bursts
 - Sub-classification
 - GRB 090227B (Family-2): Baryon load

4. GWs emission from short GRBs
 - Signal-to-Noise ratio
 - Detection rate in Ad.LIGO
The EOB formalism\(^1\) maps the conservative dynamics of a two-body system onto the geodesic dynamics of one body of mass \(\mu = \frac{M_1 M_2}{M^2}\).

\[
ds^2 = -A(r)dt^2 + B(r)dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2)
\]

where \(r = \frac{c^2 r_{12}}{GM}\) and the symmetric mass ratio \(\nu = \frac{M_1 M_2}{M^2}\).

\[
\begin{align*}
A[1PN] &= 1 - 2u \\
A[3PN] &= A[2PN] + \left(\frac{94}{3} - \frac{41}{32}\pi^2\right)\nu u^4 \\
A[4PN] &= A[3PN] + \nu[a^c_5(\nu) + a^\ln_5 \ln u]u^5
\end{align*}
\]

4PN coefficients

\[
\begin{align*}
a^c_5(\nu) &= \frac{64}{5} \\
a^c_5 &= a^c_{5,0} + a^c_{5,1} \\
a^c_{5,0} &= \frac{-4237}{60} + \frac{2275\pi^2}{512} + \frac{256\log(2)}{5} + \frac{128}{5}\gamma \\
a^c_{5,1} &= \frac{-221}{6} + \frac{41}{32}\pi^2
\end{align*}
\]

Gravitational waves (GWs)

Effective-one-body formalism

The real EOB Hamiltonian,

\[H = M c^2 \sqrt{1 + 2\nu(\hat{H}_{\text{eff}} - 1)}. \]

The Effective Hamiltonian,

\[\hat{H}_{\text{eff}}^2 = A(u) + p_\phi^2 B(u), \]

where \(B(u) = u^2 A(u) \).

The Angular momentum,

\[p_\phi^2 = -\frac{A'(u)}{[u^2 A(u)]'}. \]

We need to write \(\hat{H}_{\text{eff}} \) as a function of \(\Omega \), or orbital frequency \(f \).

\[GM\Omega(u) = \frac{1}{u} \frac{\partial H_{\text{EOB}}}{\partial j} = \frac{M A(u) p_\phi(u) u^2}{H_{\text{EOB}} \hat{H}_{\text{eff}}}. \]

Binary evolution up to the contact orbital frequency

\[A'(u_{\text{LSO}}) B''(u_{\text{LSO}}) - A''(u_{\text{LSO}}) B'(u_{\text{LSO}}) = 0 \]

where \(u = 1/r \) and \(r_{\text{LSO}} = 6GM/c^2 \).

\[\begin{align*}
 u_{\text{LSO}} &= 1/r = GM/\left(c^2 r_{\text{LSO}}\right) \\
 u_{\text{max}} &= 1/r_{\text{min}} = GM/\left(c^2 r_{\text{AB,min}}\right) \\
 A(u,0.25) &= 3\text{PN} \\
 P_3^1 &= A(u,0.25) = 3\text{PN} \\
 P_5^1 &= A(u,0.25) = 4\text{PN}
\end{align*} \]
The binding energy as a function of the orbital frequency is

\[E(\Omega) = H_{EOB} - M = M \{ \sqrt{1 + 2\nu(\hat{H}_{\text{eff}} - 1)} - 1 \} \]

(4)

The gravitational energy spectrum is obtained through the derivative \(dE_b/d\Omega \).
Outline

1. Gravitational waves (GWs)
 - Classical dynamics
 - Effective-one-body formalism

2. On the fate of neutron star binary mergers
 - Critical NS mass
 - On the stability of the post-merger core

3. Short Gamma-ray Bursts
 - Sub-classification
 - GRB 090227B (Family-2): Baryon load

4. GWs emission from short GRBs
 - Signal-to-Noise ratio
 - Detection rate in Ad.LIGO
A classification of short GRB emitted by NS mergers has been introduced by a

4J., Antoniadis et al., Science (2013)
A classification of short GRB emitted by NS mergers has been introduced bya R. Ruffini et al., ApJ (2015)

- NS binary pulsars in our Galaxy4

\begin{figure}
\centering
\includegraphics[width=\textwidth]{neutron_star_binary_fate.png}
\end{figure}

4J., Antoniadis et al., Science (2013)
A classification of short GRB emitted by NS mergers has been introduced bya

- NS binary pulsars in our Galaxy4

- **Family-1 bursts**: are emitted by the formation of a massive NS

4J., Antoniadis et al., Science (2013)
A classification of short GRB emitted by NS mergers has been introduced by\(^a\)

NS binary pulsars in our Galaxy\(^4\)

- Family-1 bursts: are emitted by the formation of a massive NS
- Family-2 bursts: are originated from a BH formation

\(^4\)J., Antoniadis et al., Science (2013)
Limits of stability for rotating NSs

- Secular instability and Keplerian or mass shedding limit

Figure: NS mass as a function of the central energy density ϵ_c for a sequence of constant angular momentum, j, with $j = cJ/(GM_\odot^2)$.

\[\log(\epsilon_c/c^2 \text{ [g cm}^{-3}\text{]}) \]

\[M/M_\odot \]

\bullet Static sequence
\bullet Keplerian sequence
\bullet Secular Instability

Δ $f=50$ Hz
\diamond $f=200$ Hz
\Diamond $f=300$ Hz
\square $f=500$ Hz
\triangle $f=716$ Hz

Limits of stability for rotating NSs

- Secular instability and Keplerian or mass shedding limit

![Graph showing neutron star mass as a function of central energy density](image)

Figure: NS mass as a function of the central energy density ϵ_c for a sequence of constant angular momentum, j, with $j = cJ/(GM_\odot^2)$.

- Figures taken from 5

On the fate of neutron star binary mergers

Critical NS mass

\[M_{J,0}^{\text{crit}} = M_J = 0 \text{crit} (1 + kj_{\text{NS}}) \]

with

\[j_{\text{NS}} = c J_{\text{NS}} / (G M^2_{\odot}) M_{J,0}^{\text{crit}} (M_{\odot})_{\text{LN}} k_p \]

\[\text{Local charge neutrality (LN): based on relativistic meanfield (RMF) theory for the core and Baym-Pethick-Sutherland (BPS) EOS for the crust} \]

\[\text{Global charge neutrality (GN): based on Einstein-Maxwell-Thomas-Fermi equations} \]

7R. Belvedere et al., Nuclear Physics A, 2012
Static case

\[M_{\text{crit}}^{J=0}(M_{\odot}) \]
\[
\begin{array}{l|cc}
\text{LN} & \text{GN} \\
\hline
\text{NL3} & 2.81 & 2.67 \\
\text{GM1} & 2.39 & 2.30 \\
\text{TM1} & 2.20 & 2.06 \\
\end{array}
\]

\[^6\text{F. Cipolletta et al., Phys. Rev. D (2015)}\]
\[^7\text{R. Belvedere et al., Nuclear Physics A, 2012}\]
On the fate of neutron star binary mergers

Critical NS mass

Static case

\[M_{\text{crit}}^{J=0}(M_\odot) \]

<table>
<thead>
<tr>
<th></th>
<th>LN</th>
<th>GN</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL3</td>
<td>2.81</td>
<td>2.67</td>
</tr>
<tr>
<td>GM1</td>
<td>2.39</td>
<td>2.30</td>
</tr>
<tr>
<td>TM1</td>
<td>2.20</td>
<td>2.06</td>
</tr>
</tbody>
</table>

Rotating case

\[M_{\text{crit}}^{j \neq 0} = M_{\text{crit}}^{J=0}(1 + k j_{\text{NS}}^p) \]

with \(j_{\text{NS}} = c J_{\text{NS}} / (G M_\odot^2) \)

<table>
<thead>
<tr>
<th></th>
<th>LN</th>
<th>k</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL3</td>
<td>3.38</td>
<td>0.0060</td>
<td>1.68</td>
</tr>
<tr>
<td>GM1</td>
<td>2.84</td>
<td>0.011</td>
<td>1.69</td>
</tr>
<tr>
<td>TM1</td>
<td>2.62</td>
<td>0.017</td>
<td>1.61</td>
</tr>
</tbody>
</table>

7 R. Belvedere et al., Nuclear Physics A, 2012
On the fate of neutron star binary mergers

Critical NS mass

Static case

Rotating case $M^{J\neq 0}_{\text{crit}} = M^{J=0}_{\text{crit}}(1 + kj_{NS}^p)$

with $j_{NS} = cJ_{NS}/(GM_\odot^2)$

<table>
<thead>
<tr>
<th>EOS</th>
<th>$M^{J=0}{\text{crit}}(M\odot)$</th>
<th>$M^{j\neq 0}{\text{crit}}(M\odot)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LN</td>
<td>GN</td>
</tr>
<tr>
<td>NL3</td>
<td>2.81</td>
<td>2.67</td>
</tr>
<tr>
<td>GM1</td>
<td>2.39</td>
<td>2.30</td>
</tr>
<tr>
<td>TM1</td>
<td>2.20</td>
<td>2.06</td>
</tr>
</tbody>
</table>

- **Local charge neutrality (LN):** based on relativistic meanfield (RMF) theory for the core and Baym-Pethick-Sutherland (BPS) EOS for the crust\(^6\).

\(^7\)R. Belvedere et al., Nuclear Physics A, 2012
Static case

\[M^{J=0}_{\text{crit}}(M_\odot) \]

<table>
<thead>
<tr>
<th></th>
<th>LN</th>
<th>GN</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL3</td>
<td>2.81</td>
<td>2.67</td>
</tr>
<tr>
<td>GM1</td>
<td>2.39</td>
<td>2.30</td>
</tr>
<tr>
<td>TM1</td>
<td>2.20</td>
<td>2.06</td>
</tr>
</tbody>
</table>

Rotating case

\[M^{j \neq 0}_{\text{crit}} = M^{J=0}_{\text{crit}} (1 + k j_{NS}^p) \]

with \(j_{NS} = c J_{NS} / (G M_\odot^2) \)

<table>
<thead>
<tr>
<th></th>
<th>LN</th>
<th>k</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL3</td>
<td>3.38</td>
<td>0.0060</td>
<td>1.68</td>
</tr>
<tr>
<td>GM1</td>
<td>2.84</td>
<td>0.011</td>
<td>1.69</td>
</tr>
<tr>
<td>TM1</td>
<td>2.62</td>
<td>0.017</td>
<td>1.61</td>
</tr>
</tbody>
</table>

- **Local charge neutrality (LN):** based on relativistic meanfield (RMF) theory for the core and Baym-Pethick-Sutherland (BPS) EOS for the crust\(^6\).
- **Global charge neutrality (GN):** based on Einstein-Maxwell-Thomas-Fermi equations\(^7\).

\(^{7}\)R. Belvedere et al., Nuclear Physics A, 2012
On the fate of neutron star binary mergers

Critical NS mass

Observational constrains

- Massive NS observed $2M_\odot$ Antoniadis et al., Science (2013)

On the fate of neutron star binary mergers

Critical NS mass

Observational constrains

- Massive NS observed $2M_{\odot}$ Antoniadis et al., Science (2013)
- Fastest NS observed 716Hz Demorest et al., Science (2006)

On the fate of neutron star binary mergers

Critical NS mass

Observational constrains

- Massive NS observed $2M_\odot$
 Antoniadis et al., Science (2013)
- Fastest NS observed 716Hz
- Radii from X-ray emission (shaded area)
 Lattimer & Steiner, EPJ (2014)

\[M \text{ } [M_\odot] \quad R_{\text{eq}} \text{ } [\text{km}] \]

X-Rays Data

\[8 \text{F. Cipolletta et al., Phys. Rev. D (2015)} \]
Observational constraints

- Massive NS observed $2M_{\odot}$ Antoniadis et al., Science (2013)
- Fastest NS observed 716Hz Demorest et al., Science (2006)
- Radii from X-ray emission (shaded area) Lattimer & Steiner, EPJ (2014)
 (low-mass X-ray binaries and X-ray isolated NSs)

Observational constrains

- Massive NS observed $2M_\odot$
 Antoniadis et al., Science (2013)
- Fastest NS observed 716Hz
- Radii from X-ray emission (shaded area)
 Lattimer & Steiner, EPJ (2014)
 (low-mass X-ray binaries and X-ray isolated NSs)

Figure taken from

Outline

1. Gravitational waves (GWs)
 - Classical dynamics
 - Effective-one-body formalism

2. On the fate of neutron star binary mergers
 - Critical NS mass
 - On the stability of the post-merger core

3. Short Gamma-ray Bursts
 - Sub-classification
 - GRB 090227B (Family-2): Baryon load

4. GWs emission from short GRBs
 - Signal-to-Noise ratio
 - Detection rate in Ad.LIGO
Which are the mass and angular momentum of the merger core?

Mass-ratio of the binary $M_1/M_2 \sim 1$ for galactic BNSs
Degree at which baryon and angular momentum are conserved
(mass and angular momentum loss, mass and angular momentum of a surrounding disk)

$$(M_1, M_2) \rightarrow (M_{b,1}, M_{b,2}) \rightarrow M_{b,f} = \alpha(M_{b,1} + M_{b,2}) \text{ where } \alpha \leq 1 \quad (5)$$

$$J_{mc} = \beta J_i \sim \beta J_{bin}(contact) \text{ where } \beta \leq 1 \quad (6)$$
Which are the mass and angular momentum of the merger core?

Mass-ratio of the binary \(M_1/M_2 \sim 1 \) for galactic BNSs

Degree at which baryon and angular momentum are conserved

(mass and angular momentum loss, mass and angular momentum of a surrounding disk)

\[
(M_1, M_2) \rightarrow (M_{b,1}, M_{b,2}) \rightarrow M_{b,f} = \alpha(M_{b,1} + M_{b,2}) \text{ where } \alpha \leq 1 \tag{5}
\]

\[
J_{mc} = \beta J_i \sim \beta J_{bin}(\text{contact}) \text{ where } \beta \leq 1 \tag{6}
\]

- Neutron Star Binding Energy\(^9\)

Which are the mass and angular momentum of the merger core?

Mass-ratio of the binary $M_1/M_2 \sim 1$ for galactic BNSs
Degree at which baryon and angular momentum are conserved
(mass and angular momentum loss, mass and angular momentum of a surrounding disk)

$$(M_1, M_2) \rightarrow (M_{b,1}, M_{b,2}) \rightarrow M_{b,f} = \alpha(M_{b,1} + M_{b,2}) \text{ where } \alpha \leq 1$$

$$J_{mc} = \beta J_i \sim \beta J_{bin}(contact) \text{ where } \beta \leq 1$$

- Neutron Star Binding Energy\(^9\)

Which are the mass and angular momentum of the merger core?

Mass-ratio of the binary $M_1/M_2 \sim 1$ for galactic BNSs
Degree at which baryon and angular momentum are conserved
(mass and angular momentum loss, mass and angular momentum of a surrounding disk)

$$ (M_1, M_2) \rightarrow (M_{b,1}, M_{b,2}) \rightarrow M_{b,f} = \alpha(M_{b,1} + M_{b,2}) \text{ where } \alpha \leq 1 \quad (5) $$

$$ J_{mc} = \beta J_i \sim \beta J_{bin}(\text{contact}) \text{ where } \beta \leq 1 \quad (6) $$

- Neutron Star Binding Energy\(^9\)

Static configurations

$$ \frac{M_b}{M_\odot} \approx \frac{M}{M_\odot} + \frac{13}{200} \left(\frac{M}{M_\odot} \right)^2 $$

Which are the mass and angular momentum of the merger core?

Mass-ratio of the binary $M_1/M_2 \sim 1$ for galactic BNSs
Degree at which baryon and angular momentum are conserved
(mass and angular momentum loss, mass and angular momentum of a surrounding disk)

\[(M_1, M_2) \rightarrow (M_{b,1}, M_{b,2}) \rightarrow M_{b,f} = \alpha (M_{b,1} + M_{b,2}) \text{ where } \alpha \leq 1 \]

\[J_{mc} = \beta J_i \sim \beta J_{bin} \text{(contact)} \text{ where } \beta \leq 1 \]

- Neutron Star Binding Energy\(^9\)

Static configurations

\[\frac{M_b}{M_\odot} \approx \frac{M}{M_\odot} + \frac{13}{200} \left(\frac{M}{M_\odot} \right)^2 \]

Rotating configurations

\[\frac{M_b}{M_\odot} = \frac{M}{M_\odot} + \frac{13}{200} \left(\frac{M}{M_\odot} \right)^2 \left(1 - \frac{1}{130} j_{NS}^{1.7} \right) \]

Fate of the post-merger core?

- Stable range of masses: $M_1 = M_2 = 1.30 - 1.47 \, M_{\odot}$
- Secular Instability
- Mass-Shedding
Fate of the post-merger core?

- **EOS GM1**

![Diagram](image-url)

- Stable range of masses: $M_1=M_2 = 1.30-1.47$ M$_\odot$
Fate of the post-merger core?

- EOS GM1
- 90% of the angular momentum at the merger assumed to be kept by the new compact core
Fate of the post-merger core?

- EOS GM1
 - 90% of the angular momentum at the merger assumed to be kept by the new compact core
 - $1.0M_\odot < M_1 = M_2 < 2.0M_\odot$
Outline

1. Gravitational waves (GWs)
 - Classical dynamics
 - Effective-one-body formalism

2. On the fate of neutron star binary mergers
 - Critical NS mass
 - On the stability of the post-merger core

3. Short Gamma-ray Bursts
 - Sub-classification
 - GRB 090227B (Family-2): Baryon load

4. GWs emission from short GRBs
 - Signal-to-Noise ratio
 - Detection rate in Ad.LIGO
<table>
<thead>
<tr>
<th>Short Gamma-ray Bursts</th>
<th>Sub-classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family-1 bursts:</td>
<td>$E_{\text{iso}} < 10^{52}$ erg</td>
</tr>
<tr>
<td></td>
<td>$M_{\text{tot}} \lesssim M_{\text{crit}}$</td>
</tr>
<tr>
<td>Originate:</td>
<td>formation of a massive NS</td>
</tr>
<tr>
<td>Family-2 bursts:</td>
<td>$E_{\text{iso}} > 10^{52}$ erg</td>
</tr>
<tr>
<td></td>
<td>$M_{\text{tot}} \gtrsim M_{\text{crit}}$</td>
</tr>
<tr>
<td>Originate:</td>
<td>formation of a BH</td>
</tr>
</tbody>
</table>

Short GRBs:

E_p, $i - E_{\text{iso}}$ relation

see the talk of Marco Muccino!
Family-1 bursts: $E_{iso} < 10^{52}$ erg
$M_{tot} \lesssim M_{crit}$
Originate: formation of a massive NS
Family-1 bursts: $E_{iso} < 10^{52}$ erg
\[M_{tot} \lesssim M_{crit} \]
Originate: formation of a massive NS

Family-2 bursts: $E_{iso} > 10^{52}$ erg
\[M_{tot} \gtrsim M_{crit} \]
Originate: formation of a BH
Short Gamma-ray Bursts

Sub-classification

<table>
<thead>
<tr>
<th>Family-1 bursts: $E_{iso} < 10^{52}$erg</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{tot} \lesssim M_{crit}$</td>
</tr>
<tr>
<td>Originate: formation of a massive NS</td>
</tr>
<tr>
<td>Short GRBs: $E_{p,i} - E_{iso}$ relation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family-2 bursts: $E_{iso} > 10^{52}$erg</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{tot} \gtrsim M_{crit}$</td>
</tr>
<tr>
<td>Originate: formation of a BH</td>
</tr>
</tbody>
</table>

see the talk of Marco Muccino!

(ICRANet)
Family-1 bursts: $E_{iso} < 10^{52}$ erg

$M_{tot} \lesssim M_{crit}$

Originate: formation of a massive NS

- Short GRBs: $E_{p,i} - E_{iso}$ relation

Family-2 bursts: $E_{iso} > 10^{52}$ erg

$M_{tot} \gtrsim M_{crit}$

Originate: formation of a BH
Family-1 bursts: $E_{iso} < 10^{52}\text{erg}$

$M_{tot} \lesssim M_{\text{crit}}$

Originate: formation of a massive NS

- Short GRBs: $E_{p,i} - E_{iso}$ relation

Family-2 bursts: $E_{iso} > 10^{52}\text{erg}$

$M_{tot} \gtrsim M_{\text{crit}}$

Originate: formation of a BH
Short Gamma-ray Bursts

Sub-classification

Family-1 bursts: \(E_{\text{iso}} < 10^{52}\text{erg} \)
\[M_{\text{tot}} \lesssim M_{\text{crit}} \]
Originate: formation of a massive NS
- Short GRBs: \(E_{p,i} - E_{\text{iso}} \) relation

Family-2 bursts: \(E_{\text{iso}} > 10^{52}\text{erg} \)
\[M_{\text{tot}} \gtrsim M_{\text{crit}} \]
Originate: formation of a BH

see the talk of Marco Muccino!
Outline

1. Gravitational waves (GWs)
 - Classical dynamics
 - Effective-one-body formalism

2. On the fate of neutron star binary mergers
 - Critical NS mass
 - On the stability of the post-merger core

3. Short Gamma-ray Bursts
 - Sub-classification
 - GRB 090227B (Family-2): Baryon load

4. GWs emission from short GRBs
 - Signal-to-Noise ratio
 - Detection rate in Ad.LIGO
Estimation of the theoretical baryon load for Short GRB 090227B (Family-2)

\[B_{\text{th}} = \eta M_{\text{tot}} \times \frac{c^2}{E_{\text{GRB}}}, \]

where \(\eta \) is the fraction of the crustal mass ejected.

\(^{10}\) Oliveira et al., ApJ (2014)

\(^{11}\) R. Belvedere et al., Nuclear Physics A, 2012
Estimation of the theoretical baryon load for Short GRB 090227B (Family-2)

Assumption: baryonic matter that the GRB interact with is provided by material of the NSs ejected during the merger10.

11R. Belvedere et al., Nuclear Physics A, 2012
Estimation of the theoretical baryon load for Short GRB 090227B (Family-2)

Assumption: baryonic matter that the GRB interact with is provided by material of the NSs ejected during the merger\(^{10}\).

Baryon Load

\[
B_{th} = \frac{\eta M_{\text{crust}}^{\text{tot}} c^2}{E_{\text{GRB}}^{\text{tot}}} \tag{7}
\]

where \(\eta\) is the fraction of the crustal mass ejected.

\(^{10}\)Oliveira et al., ApJ (2014)

\(^{11}\)R. Belvedere et al., Nuclear Physics A, 2012
- Estimation of the theoretical baryon load for Short GRB 090227B (Family-2)
- Assumption: baryonic matter that the GRB interact with is provided by material of the NSs ejected during the merger\(^\text{10}\).

Baryon Load

\[
B_{th} = \frac{\eta M_{\text{tot}}^{\text{crust}} c^2}{E_{\text{GRB}}^{\text{tot}}} \tag{7}
\]

where \(\eta\) is the fraction of the crustal mass ejected.

\(^{10}\) Oliveira et al., ApJ (2014)

\(^{11}\) R. Belvedere et al., Nuclear Physics A, 2012
Estimation of the theoretical baryon load for Short GRB 090227B (Family-2)

Assumption: baryonic matter that the GRB interact with is provided by material of the NSs ejected during the merger\(^{10}\).

Baryon Load

\[
B_{th} = \frac{\eta M_{\text{crust}} c^2}{E_{\text{GRB}}^{\text{tot}}} \quad (7)
\]

where \(\eta\) is the fraction of the crustal mass ejected.

Properties of Neutron Star\(^{11}\)

<table>
<thead>
<tr>
<th>(M(M_\odot))</th>
<th>(R(\text{km}))</th>
<th>(M_{\text{crust}}(M_\odot))</th>
<th>(R_{\text{crust}}(\text{km}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.335</td>
<td>12.24</td>
<td>(3.6 \times 10^{-5})</td>
<td>0.47</td>
</tr>
</tbody>
</table>

\(^{10}\)Oliveira et al., ApJ (2014)

\(^{11}\)R. Belvedere et al., Nuclear Physics A, 2012
The theoretical baryon load12 for the short GRB 090227B
\[E_{\text{GRB}}^{\text{tot}} = 2.83 \times 10^{53} \text{erg}\]

12Oliveira et al., ApJ (2014)
13Ruffert and Janka and 2001 Goriely et al., 2011
The theoretical baryon load12 for the short GRB 090227B
\[E_{\text{tot}}^{\text{GRB}} = 2.83 \times 10^{53} \text{erg} \]

12Oliveira et al., ApJ (2014)
13Ruffert and Janka and 2001 Goriely et al., 2011
The theoretical baryon load\(^{12}\) for the short GRB 090227B

\[E_{\text{tot}}^{\text{GRB}} = 2.83 \times 10^{53} \text{erg} \]

Observational

\[B_{\text{obs}} = 4.13 \times 10^{-5} \]
\[M_{BL} = B_{\text{obs}} E_{\text{tot}}^{\text{GRB}} / c^2 = 0.7 \times 10^{-5} M_{\odot} \]

\(^{13}\) Ruffert and Janka and 2001 Goriely et al., 2011
The theoretical baryon load12 for the short GRB 090227B

\[E_{\text{tot}}^{\text{GRB}} = 2.83 \times 10^{53} \text{erg} \]

Observational

\[B_{\text{obs}} = 4.13 \times 10^{-5} \]

\[M_{\text{BL}} = B_{\text{obs}} E_{\text{tot}}^{\text{GRB}} / c^2 = 0.7 \times 10^{-5} M_{\odot} \]

Theoretical (GN NL3)

\[B_{\text{th}} \approx 4.5 \times 10^{-5} \text{ with } \eta = 0.1 \]

\[M_{\text{BL}} = 7.2 \times 10^{-5} M_{\odot} \]

12Oliveira et al., ApJ (2014)

13Ruffert and Janka and 2001 Goriely et al., 2011
The theoretical baryon load12 for the short GRB 090227B

\[E_{\text{tot}}^{\text{GRB}} = 2.83 \times 10^{53} \text{erg} \]

Observational

\[B_{\text{obs}} = 4.13 \times 10^{-5} \]
\[M_{BL} = B_{\text{obs}} E_{\text{tot}}^{\text{GRB}} / c^2 = 0.7 \times 10^{-5} M_{\odot} \]

Theoretical (GN NL3)

\[B_{\text{th}} \approx 4.5 \times 10^{-5} \text{ with } \eta = 0.1 \]
\[M_{BL} = 7.2 \times 10^{-5} M_{\odot} \]

12Oliveira et al., ApJ (2014)

13Ruffert and Janka and 2001 Goriely et al., 2011
The theoretical baryon load12 for the short GRB 090227B

\[E_{\text{GRB}}^{\text{tot}} = 2.83 \times 10^{53} \text{erg} \]

Observational

\[B_{\text{obs}} = 4.13 \times 10^{-5} \]
\[M_{BL} = B_{\text{obs}} E_{\text{tot}}^{\text{GRB}} / c^2 = 0.7 \times 10^{-5} M_\odot \]

Theoretical (GN NL3)

\[B_{\text{th}} \approx 4.5 \times 10^{-5} \text{ with } \eta = 0.1 \]
\[M_{BL} = 7.2 \times 10^{-5} M_\odot \]

Numerical simulation of the dynamical evolution of DNS:

\[M_B \sim 10^{-3} - 10^{-2} M_\odot, \text{ where LN was employed.}13 \]

12 Oliveira et al., ApJ (2014)

13 Ruffert and Janka and 2001 Goriely et al., 2011
Outline

1. Gravitational waves (GWs)
 - Classical dynamics
 - Effective-one-body formalism

2. On the fate of neutron star binary mergers
 - Critical NS mass
 - On the stability of the post-merger core

3. Short Gamma-ray Bursts
 - Sub-classification
 - GRB 090227B (Family-2): Baryon load

4. GWs emission from short GRBs
 - Signal-to-Noise ratio
 - Detection rate in Ad.LIGO
The signal-to-noise ratio SNR

\[\text{SNR}^2 = 4 \int_0^\infty \frac{|\tilde{h}(f)|}{S_h(f)} df \] \hspace{1cm} (8)

where \(\tilde{h}(f) \) is the Fourier transform of \(h(t) \) and \(S_h(f) \) is the strain noise spectral density in the interferometer.

The signal-to-noise ratio SNR

\[
\text{SNR}^2 = 4 \int_0^{\infty} \frac{\lvert \tilde{h}(f) \rvert}{S_h(f)} df
\]

(8)

where \(\tilde{h}(f) \) is the Fourier transform of \(h(t) \) and \(S_h(f) \) is the strain noise spectral density in the interferometer.

- The average of the square SNR \(\langle \text{SNR}^2 \rangle \) over all orientations and directions to the source, depends on the energy spectrum \(dE/df \) of the emitted GWs.

\[
\langle \text{SNR}^2 \rangle = \int_{f_{\text{min}}}^{f_{\text{max}}} df_d \frac{h_c^2(f_d)}{5f_d^2 S_n^2(f_d)},
\]

(9)

The signal-to-noise ratio SNR

\[
\text{SNR}^2 = 4 \int_0^\infty \frac{|\tilde{h}(f)|}{S_h(f)} \, df
\]

(8)

where \(\tilde{h}(f) \) is the Fourier transform of \(h(t) \) and \(S_h(f) \) is the strain noise spectral density in the interferometer.

- The average of the square SNR \(\langle \text{SNR}^2 \rangle \) over all orientations and directions to the source, depends on the energy spectrum \(dE/df \) of the emitted GWs \(^{14}\)

\[
\langle \text{SNR}^2 \rangle = \int_{f_{\text{min}}}^{f_{\text{max}}} df_d \frac{h_c^2(f_d)}{5 f_d^2 S_n^2(f_d)},
\]

(9)

- The amplitude \(h_c \) is defined as the Fourier transform of the gravitational waveform \(h(t) \), \(h_c(f) = f|\tilde{h}(f)| \)

\[
h_c^2(f) = \frac{2(1 + z)^2}{\pi^2 d_L^2} \frac{dE}{df} [(1 + z)f_d],
\]

(10)

Gravitational waves emission from progenitors of short GRBs (Family-2 bursts)
- Gravitational waves emission from progenitors of short GRBs (Family-2 bursts)
- GRB 090510 $z = 0.9$, GRB 090227B $z = 1.61$ and GRB 140619B $z = 2.67$
- Gravitational waves emission from progenitors of short GRBs (Family-2 bursts)
- GRB 090510 $z = 0.9$, GRB 090227B $z = 1.61$ and GRB 140619B $z = 2.67$
Outline

1. Gravitational waves (GWs)
 - Classical dynamics
 - Effective-one-body formalism

2. On the fate of neutron star binary mergers
 - Critical NS mass
 - On the stability of the post-merger core

3. Short Gamma-ray Bursts
 - Sub-classification
 - GRB 090227B (Family-2): Baryon load

4. GWs emission from short GRBs
 - Signal-to-Noise ratio
 - Detection rate in Ad.LIGO
The coalescence rate for the family-2 was calculated by

\[R_c = \left(0.2 - 6.2 \right) \times 10^{-4} \text{Gpc}^{-3} \text{yr}^{-1} \]

Using the coalescence rates \(R_c \), we made an estimation of the number of coalescing NS binaries that advanced LIGO could detect in the next years

\[N_d \approx 4 \pi \frac{3}{2} R_c D_h^3 T \left(\frac{M_c}{M_1 + M_2} \right)^{15/6} \]

where \(R_c \) is the coalescence rate, \(T \) is the observed time, \(M_c = \left(\frac{M_1 + M_2}{3} \right)^{2/5} \left(\frac{M_1 M_2}{2} \right)^{-1/5} \) is the chirp mass of the binary and the Adv. LIGO horizon distances is \(D_h \).

\[^{15}\text{Ruffini et al., ApJ (2015)}\]
The coalescence rate for the family-2 was calculated by

\[R_c = \left(1 - 10^{-3}\right) \text{Gpc}^{-3} \text{yr}^{-1} \]

\[R_c = (0.2 - 6.2) \times 10^{-4} \text{Gpc}^{-3} \text{yr}^{-1} \]

Using the coalescence rates \(R_c \), we made an estimation of the number of coalescing NS binaries that advanced LIGO could detect in the next years

\[N_d \approx \frac{4}{\pi} \left(\frac{R_c D^3}{h T} \right) \]

where \(R_c \) is the coalescence rate, \(T \) is the observed time, \(M_c = \left(M_1 + M_2 \right)^{3/5} \left(M_1 M_2 \right)^{-1/5} \) is the chirp mass of the binary and the Adv. LIGO horizon distances is \(D_h \).
The coalescence rate for the family-2 was calculated by15

\[R_c = (1 - 10) \text{ Gpc}^{-3}\text{yr}^{-1} \]

The coalescence rate for the family-2 was calculated by15

\[R_c = (1 - 10) \text{ Gpc}^{-3}\text{yr}^{-1} \quad \text{E. Berger, ARAA (2014)} \]

\[R_c = (0.2 - 6.2) \times 10^{-4} \text{ Gpc}^{-3}\text{yr}^{-1} \]

The coalescence rate for the family-2 was calculated by15

\[R_c = (1 - 10) \text{ Gpc}^{-3} \text{yr}^{-1} \]

\[R_c = (0.2 - 6.2) \times 10^{-4} \text{ Gpc}^{-3} \text{yr}^{-1} \]

Using the coalescence rates \(R_c \), we made an estimation of the number of coalescing NS binaries that advanced LIGO could detect in the next years.
The coalescence rate for the family-2 was calculated by15

\[
R_c = (1 - 10) \text{ Gpc}^{-3}\text{yr}^{-1} \text{ E. Berger, ARAA (2014)}
\]

\[
R_c = (0.2 - 6.2) \times 10^{-4} \text{ Gpc}^{-3}\text{yr}^{-1}
\]

Using the coalescence rates \(R_c\), we made an estimation of the number of coalescing NS binaries that advanced LIGO could detect in the next years

\[
N_d \approx \frac{4\pi}{3} R_c D_h^3 T \left(\frac{\mathcal{M}_c}{1.2M_\odot} \right)^{15/6}
\]

(11)

where \(R_c\) is the coalescence rate, \(T\) is the observed time, \(\mathcal{M}_c = (M_1 + M_2)^{3/5}(M_1M_2)^{-1/5}\), is the chirp mass of the binary and the Adv. LIGO horizon distances is \(D_h\).

- Sensitivity and Horizon distance in adv.LIGO16

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
Epoch & Estimated Run Duration & $E_{GW} = 10^{-2}M_\odot c^2$ & BNS Range (Mpc) & Number of BNS Detections & \% BNS Localized within 5 deg2 & \% BNS Localized within 20 deg2
\hline
2015 & 3 months & LIGO 40 – 60 & Virgo – & 0.0004 – 3 & – & –
2016–17 & 6 months & LIGO 60 – 75 & Virgo 20 – 40 & 0.006 – 20 & 2 & 5 – 12
2017–18 & 9 months & LIGO 75 – 90 & Virgo 40 – 50 & 0.04 – 100 & 1 & 2 & 10 – 12
2019+ & (per year) & LIGO 105 & Virgo 40 – 80 & 0.2 – 200 & 3 & 8 & 8 – 28
2022+ (India) & (per year) & LIGO 105 & Virgo 80 & 0.4 – 400 & 17 & 48
\hline
\end{tabular}
\end{table}

16J. Aasi et al. (LIGO Scientific Collaboration and Virgo15 Collaboration), arXiv 1304, 0670 (2013)
Family-1 bursts: \(\text{NS+NS} = \text{MNS} \)

Figure: Number of detections, \(N_d \), of the coalescing NS binary systems in Advanced LIGO per year, using the coalescence rate \(R_c \), for family-1 bursts (NS+NS=MNS).
Family-2 bursts: NS+NS=BH

Figure: Number of detections, N_d of the coalescing NS binary systems in Advanced LIGO per year, using the coalescence rate R_c, for family-2 bursts (NS+NS=BH).
Conclusions

- We applied the EOB formalism to calculate the emission of GWs by a neutron star binary system.
Conclusions

- We applied the EOB formalism to calculated the emission of GWs by a neutron star binary system.
- We checked the stability of the post-merger NS with respect to the mass-shedding limit and the secular axisymmetric instability.
Conclusions

- We applied the EOB formalism to calculated the emission of GWs by a neutron star binary system.
- We checked the stability of the post-merger NS with respect to the mass-shedding limit and the secular axisymmetric instability.
- We established that for a BH formation occurs after the merger, the total mass of the NS binary must be higher than the critical mass. For total mass of the binary less massive than the critical mass, a massive NS is formed.
Conclusions

- We applied the EOB formalism to calculate the emission of GWs by a neutron star binary system.
- We checked the stability of the post-merger NS with respect to the mass-shedding limit and the secular axisymmetric instability.
- We established that for a BH formation occurs after the merger, the total mass of the NS binary must be higher than the critical mass. For total mass of the binary less massive than the critical mass, a massive NS is formed.
- We computed the SNR up to the contact point of the binary components by using the adv.LIGO interferometer as well as the estimated number of detections which advanced LIGO could expect to detect gravitational waves from NS binary merger in the next years.
Conclusions

- We applied the EOB formalism to calculated the emission of GWs by a neutron star binary system.
- We checked the stability of the post-merger NS with respect to the mass-shedding limit and the secular axisymmetric instability.
- We stablished that for a BH formation occurs after the merger, the total mass of the NS binary must be higher than the critical mass. For total mass of the binary less massive than the critical mass, a massive NS is formed.
- We computed the SNR up to the contact point of the binary components by using the adv.LIGO interferometer as well as the estimated number of detections which advanced LIGO could expect to detect gravitational waves from NS binary merger in the next years.

Thank You!
Conclusions

- We applied the EOB formalism to calculate the emission of GWs by a neutron star binary system.
- We checked the stability of the post-merger NS with respect to the mass-shedding limit and the secular axisymmetric instability.
- We established that for a BH formation occurs after the merger, the total mass of the NS binary must be higher than the critical mass. For total mass of the binary less massive than the critical mass, a massive NS is formed.
- We computed the SNR up to the contact point of the binary components by using the adv.LIGO interferometer as well as the estimated number of detections which advanced LIGO could expect to detect gravitational waves from NS binary merger in the next years.

Thank you!