GRB emission from inside the fireshell

Carlo Luciano Bianco, Aimuratov, Yerlan; Enderli, Maxime; Karlica, Mile; Kovacevic, Milos; Moradi, Rahim; Muccino, Marco; Pisani, Giovanni B.; Rueda, Jorge A.; Ruffini, Remo; Wang, Yu

Italian – Korean Meeting
ICRANet Headquarters – Pescara – Italy – 22/07/2015
Space-time diagram for Long GRBs $> 10^{52}$ erg (see R. Ruffini’s talk)
Moving sources:
Arrival time and emission time

R

t
Moving sources:
Arrival time and emission time
Moving sources: Arrival time and emission time

\[t \approx R \]

\[\gamma \approx 4 \]
Moving sources:
Arrival time and emission time

\[t_0 + \Delta t \]

\[\gamma \approx 4 \]
Moving sources:
Arrival time and emission time

\[t = t_0 + \Delta t \]

\[\gamma \approx 4 \]
Moving sources: Arrival time and emission time

\[R_t \]

\[\Delta t_a \approx 4 (t_0 + \Delta t) \]

\[\gamma \approx 4 \]

\[\frac{r(\Delta t)}{c} = \frac{u}{c} \Delta t \]
Moving sources:
Arrival time and emission time

\[\Delta t_a = \Delta t - \frac{r(\Delta t)}{c} = \Delta t \left(1 - \frac{\nu}{c}\right) \]

\[\gamma \approx 4 \]

\[t \]

\[t_0 \]

\[t + \Delta t \]

\[R \]

\[r \]

\[\Delta t_a \]

\[\Delta t \]

\[\frac{r(\Delta t)}{c} \]

\[\frac{\nu}{c} \]

\[\Delta t \]

\[(1 - \frac{\nu}{c}) \]
Moving sources:

Arrival time and emission time

The arrival time on the Earth of a signal depends on the motion of the source!

\[\Delta t_a = \Delta t - \frac{r(\Delta t)}{c} = \Delta t \left(1 - \frac{v}{c}\right) \]

\[\gamma \approx 4 \]

\[t_0 + \Delta t \]

\[t \]

\[t + \Delta t \]

\[\Delta t \]

\[r \]

\[R \]
Moving sources:

Arrival time and emission time

The arrival time on the Earth of a signal depends on the motion of the source!

It's possible to observe superluminal velocities!

\[\Delta t_a = \Delta t - \frac{r(\Delta t)}{c} = \Delta t \left(1 - \frac{v}{c}\right) \]

where \(\gamma \approx 4 \)
Lorentz contraction or Doppler effect?

Doppler contraction: \[T = T_0 \gamma \left(1 - \frac{v}{c}\right) \]

where:
- \(\gamma \) is the Lorentz gamma factor of the moving source,
- \(T_0 \) is the period of the radiation measured in the co-moving frame,
- \(T \) is the period of the radiation measured by an observer at rest.
Lorentz contraction or Doppler effect?

Doppler contraction: \[T = T_0 \gamma \left(1 - \frac{\nu}{c}\right) \]

where:

– \(\gamma \) is the Lorentz gamma factor of the moving source,
– \(T_0 \) is the period of the radiation measured in the co-moving frame,
– \(T \) is the period of the radiation measured by an observer at rest.

Arrival time: \[\Delta t_a = \Delta \tau \gamma \left(1 - \frac{\nu}{c}\right) = \Delta t \left(1 - \frac{\nu}{c}\right) \]
Lorentz contraction
or Doppler effect?

Doppler contraction:
\[T = T_0 \gamma \left(1 - \frac{v}{c} \right) \]

where:
– \(\gamma \) is the Lorentz gamma factor of the moving source,
– \(T_0 \) is the period of the radiation measured in the co-moving frame,
– \(T \) is the period of the radiation measured by an observer at rest.

Arrival time:
\[\Delta t_a = \Delta \tau \gamma \left(1 - \frac{v}{c} \right) = \Delta t \left(1 - \frac{v}{c} \right) \]

Is then only a Doppler contraction and does not involve any Lorentz transformation.
Moving sources: Constant speed vs. variable speed

\[\Delta t_a = \Delta t - \frac{r (\Delta t)}{c} = \Delta t \left(1 - \frac{v}{c} \right) \approx \frac{\Delta t}{2\gamma^2} = \frac{\Delta t}{32} \]

Moving sources: Constant speed vs. variable speed

\[\Delta t_a = \Delta t - \frac{r(\Delta t)}{c} = \Delta t \left(1 - \frac{v}{c}\right) \approx \frac{\Delta t}{2\gamma^2} = \frac{\Delta t}{32} \]

\[\Delta t_a = \Delta t - \frac{r(\Delta t)}{c} = \Delta t - \frac{1}{c} \int_{t_0}^{t_0+\Delta t} v(t) \, dt \]

\(\gamma \equiv 4 \)

1 \leq \gamma \leq 300 (in GRBs)

Couderc, Ann. Astr., 2, 271, (1939)
\[\Delta t_a = \Delta t - \frac{1}{c} \left[\int_{t_0}^{t_0+\Delta t} v(t) \, dt + r(t_0) \right] \cos \vartheta + \frac{r(t_0)}{c} \]

Optically thin Fireshell EoMs

\[
\begin{align*}
 dE_{\text{int}} &= (\gamma - 1) \, dM_{\text{ism}} c^2 \\
 d\gamma &= -\frac{\gamma^2 - 1}{M} \, dM_{\text{ism}} \\
 dM &= \frac{1 - \varepsilon}{c^2} \, dE_{\text{int}} + dM_{\text{ism}} \\
 dM_{\text{ism}} &= 4\pi m_p n_{\text{ism}} r^2 \, dr
\end{align*}
\]
Optically thin Fireshell EoMs

\[
\begin{align*}
 dE_{\text{int}} &= (\gamma - 1) dM_{\text{ism}} c^2 \\
 d\gamma &= -\frac{\gamma^2 - 1}{M} dM_{\text{ism}} \\
 dM &= \frac{1-\epsilon}{c^2} dE_{\text{int}} + dM_{\text{ism}} \\
 dM_{\text{ism}} &= 4\pi m_p n_{\text{ism}} r^2 dr
\end{align*}
\]

Fully radiative condition: $\epsilon = 1$

Fully adiabatic condition: $\epsilon = 0$

Optically thin Fireshell EoMs

\[dE_{\text{int}} = (\gamma - 1) dM_{\text{ism}} c^2 \]
\[d\gamma = -\frac{\gamma^2 - 1}{M} dM_{\text{ism}} \]
\[dM = \frac{1-\varepsilon}{c^2} dE_{\text{int}} + dM_{\text{ism}} \]
\[dM_{\text{ism}} = 4\pi m_p n_{\text{ism}} r^2 dr \]

Fully radiative condition: \(\varepsilon = 1 \)

\[\gamma_0 \gg \gamma \gg 1 \]
Blandford – McKee

\[\gamma \propto r^{-3} \]
\[t = \frac{r}{c} \left(1 + \frac{1}{14\gamma^2} \right) \]

Fully adiabatic condition: \(\varepsilon = 0 \)

\[\gamma_0^2 \gg \gamma^2 \gg 1 \]
Blandford – McKee

\[\gamma \propto r^{-3/2} \]
\[t = \frac{r}{c} \left[1 + \frac{1}{8\gamma^2 (r)} \right] \]

Optically thin Fireshell EoMs

\[
\begin{align*}
\text{Fully radiative condition: } & \varepsilon = 1 \\
\text{Fully adiabatic condition: } & \varepsilon = 0 \\
\end{align*}
\]

\[
\begin{align*}
dE_{\text{int}} &= (\gamma - 1) dM_{\text{ism}} c^2 \\
d\gamma &= -\frac{\gamma^2 - 1}{M} dM_{\text{ism}} \\
dM &= \frac{1-\varepsilon}{c^2} dE_{\text{int}} + dM_{\text{ism}} \\
dM_{\text{ism}} &= 4\pi m_p n_{\text{ism}} r^2 dr
\end{align*}
\]

\[\gamma_0 \gg \gamma \gg 1\]

Blandford – McKee

\[\gamma \propto r^{-3}\]

\[t = \frac{r}{c} \left(1 + \frac{1}{14\gamma^2}\right)\]

\[\gamma_0^2 \gg \gamma^2 \gg 1\]

Blandford – McKee

\[\gamma \propto r^{-3/2}\]

\[t = \frac{r}{c} \left[1 + \frac{1}{8\gamma^2 (r)}\right]\]

Comparison between exact and approximate fireshell equations of motion (radiative and adiabatic)

Exact solution

Effective power-law index: $\gamma \propto r^{-a}$

- $a = 3.0 \ (\gamma_0 \gg \gamma \gg 1)$
- $a = 1.5 \ (\gamma_0^2 \gg \gamma^2 \gg 1)$

The EQuiTemporal Surfaces (EQTSs)

\[t^d_a = (1 + z) \left[t(r) - \frac{r}{c} \cos \theta + \frac{r^*}{c} \right] \]
The EQuiTTemporal Surfaces (EQTSs)

\[t^d_a = (1 + z) \left[t(r) - \frac{r}{c} \cos \theta + \frac{r^*}{c} \right] \]

\[t(r) = \frac{r}{v} \]

\[r^* = 0 \]

The EQuiTemporal Surfaces (EQTs)

\[t^d_a = (1 + z) \left[t(r) - \frac{r}{c} \cos \vartheta + \frac{r^*}{c} \right] \]

\[t(r) = \frac{r}{v} \]

\[r^* = 0 \]

\[r(\vartheta) = \frac{v \frac{t^d_a}{1 + z}}{1 - \frac{v}{c} \cos \vartheta} \]

Ellipsoid with eccentricity \(v/c \)

The EQuiTEmental Surfaces (EQTTSs)

Using the fireshell dynamics

Ellipsoid with eccentricity v/c

\[t^d_a = (1 + z) \left[t(r) - \frac{r}{c} \cos \theta + \frac{r^*}{c} \right] \]

\[t(r) = \frac{r}{v} \]

\[r^* = 0 \]

\[r(\theta) = \frac{v \frac{t^d_a}{1 + z}}{\frac{v}{1 - \frac{v}{c} \cos \theta}} \]

The EQuiTEnporal Surfaces (EQTTSs)
Importance of exact EQTS
Importance of exact EQTS
Computing the exact EQTS shape is not only important from a kinematical point of view, but is also fundamental to study the properties of the observed radiation.
Luminosity over selected EQTSs
EQTS

apparent size

\[
\begin{align*}
 r_\perp &= \frac{r}{\gamma (r)} \\
 t_a &= t (r) - \frac{r}{c} \sqrt{1 - \frac{1}{\gamma (r)^2}} + \frac{r^*}{c}
\end{align*}
\]

With the exact solutions for \(t(r) \) and \(\gamma(r) \), both in the fully radiative and in the adiabatic regimes.
EQTS

apparent size

\[
\begin{align*}
\left\{ \begin{array}{l}
\frac{r}{\gamma(r)} \\
-t_a = t(r) - \frac{r}{c} \sqrt{1 - \frac{1}{\gamma(r)^2}} + \frac{r^*}{c}
\end{array} \right.
\]

With the exact solutions for \(t(r) \) and \(\gamma(r) \), both in the fully radiative and in the adiabatic regimes.

Sari (1998), adiabatic:

\[
r_\perp = 3.91 \times 10^{16} \left(\frac{E_{52}}{n_1} \right)^{1/8} \left(\frac{T_{days}}{1+z} \right)^{5/8} \text{ cm}
\]

Waxman, et al. (1998), adiabatic:

\[
r_\perp = 3.66 \times 10^{16} \left(\frac{E_{52}}{n_1} \right)^{1/8} \left(\frac{T_{days}}{1+z} \right)^{5/8} \text{ cm}
\]
EQTS apparent size

\[
\begin{align*}
 r_\perp &= \frac{r}{\gamma(r)} \\
 t_a &= t(r) - \frac{r}{c} \sqrt{1 - \frac{1}{\gamma(r)^2} + \frac{r^*}{c}}
\end{align*}
\]

With the exact solutions for \(t(r) \) and \(\gamma(r) \), both in the fully radiative and in the adiabatic regimes.

Sari (1998), adiabatic:
\[
r_\perp = 3.91 \times 10^{16} \left(\frac{E_{52}}{n_1} \right)^{1/8} \left(\frac{T_{\text{days}}}{1+z} \right)^{5/8} \text{ cm}
\]

Waxman, et al. (1998), adiabatic:
\[
r_\perp = 3.66 \times 10^{16} \left(\frac{E_{52}}{n_1} \right)^{1/8} \left(\frac{T_{\text{days}}}{1+z} \right)^{5/8} \text{ cm}
\]
Space-time diagram for Long GRBs $> 10^{52}$ erg (see R. Ruffini’s talk)
Emission from the other side of the fireshell

$$(v/c)\Delta t = (t + \Delta t) - t_0$$
Emission from the other side of the fireshell

\[
\Delta t_a = \Delta t (1+\nu/c) \sim 2 \Delta t
\]
Conclusions
Conclusions

- Great care has to be given to the Doppler contraction of the arrival time of the radiation emitted from the external surface of the fireshell moving toward the observer. Such a contraction can easily lead to apparent superluminal effects.
Conclusions

- Great care has to be given to the Doppler contraction of the arrival time of the radiation emitted from the external surface of the fireshell moving toward the observer. Such a contraction can easily lead to apparent superluminal effects.

- On the contrary, the radiation coming from the other side of the fireshell, the one receding from the observer, is not affected by such a contraction and the correction to the arrival time is less than a factor 2.
Conclusions

• Great care has to be given to the Doppler contraction of the arrival time of the radiation emitted from the external surface of the fireshell moving toward the observer. Such a contraction can easily lead to apparent superluminal effects.

• On the contrary, the radiation coming from the other side of the fireshell, the one receding from the observer, is not affected by such a contraction and the correction to the arrival time is less than a factor 2.

• Consequently, we are seeing at the same time and apparent position radiation emitted from very different places and times.