Structure of relativistic, rapidly rotating Neutron Stars: interior and exterior spacetime

Authors: F. Cipolletta1, C. Cherubini2, S. Filippi2, J. A. Rueda1,3, R. Ruffini1,3

1Dipartimento di Fisica and ICRA, Sapienza Universita` di Roma, P.le Aldo Moro 5, I–00185 Rome, Italy

2Nonlinear Physics and Mathematical Modeling Lab and ICRA, University Campus Bio-Medico of Rome, Via A. del Portillo 21, I–00128 Rome, Italy

3ICRANet, Piazza della Repubblica 10, I–65122 Pescara, Italy

Supernovae, Hypernovae and Binary Driven Hypernovae”
An Adriatic Workshop – 20 / 06 / 2016
SUMMARY

Relativistic Figures of Equilibrium: Neutron Stars

• Introduction to the problem of equilibrium in General Relativity (GR)
• Methods - RNS code
• Set of Equations of State (EOS)
• Equilibrium Configurations
• Useful Fitting formulas
• Marginally Stable Circular Orbits
• Example of Application
• Conclusions and Future Perspectives
The problem of Equilibrium: Neutron Stars

- Determine the geometry of the spacetime interior and surrounding the studied object
- Astrophysical Motivations – NSs as cosmic laboratories
- Numerical simulations are needed to understand physical properties of NSs and other compact objects which populate the Universe:
 - EOS
 - Internal Structure
 - Exterior Spacetime
Methods

• HT\(^4\) ⇒ expansions to \(O(\Omega^2)\) order ⇒ slow rotation
• BI\(^5\) ⇒ Newton-Raphson ⇒ elliptic-type field equations + increment in angular velocity + space truncated at a finite distance
• KEH\(^6\) ⇒ 3 integral-type field equations + 1 first-order DE + increment in axis ratio + space truncated at a finite distance
• CST\(^7\) ⇒ modification of KEH ⇒ new radial variable to map infinite region to a finite interval ⇒ no truncation
• SF\(^8\) ⇒ RNS public code
• AKM\(^9\) ⇒ Multi-domain spectral method

Geometry and Physics

Axisymmetric spacetime described by the following metric:

\[ds^2 = -e^{2\nu} dt^2 + r^2 \sin^2(\theta) B^2 e^{-2\nu}(d\phi - \omega dt)^2 + e^{2(\zeta - \nu)}(dr^2 + r^2 d\theta^2), \]

where \(\nu, B, \omega \) and \(\zeta \) depend only on the so-called quasi-isotropic coordinates \(r \) and \(\theta \).

The stress-energy tensor is the one of a perfect fluid, with form:

\[T^{ab} = (\varepsilon + P)u^a u^b + Pg^{ab}, \]

being \(\varepsilon \) the energy density, \(P \) the pressure and \(u \) the fluid’s 4-velocity.
Field Equations

\[\nabla \cdot (B \nabla \nu) = \frac{1}{2} r^2 \sin^2 \theta B^3 e^{-4\nu} \nabla \omega \cdot \nabla \omega + 4\pi B e^{2\zeta - 2\nu} \left[\frac{(\varepsilon + P)(1 + \nu^2)}{1 - \nu^2} + 2P \right], \]

\[\nabla \cdot (r^2 \sin^2 \theta B^3 e^{-4\nu} \nabla \omega) = -16\pi r \sin \theta B^2 \]

\[\times e^{2\zeta - 4\nu} \frac{(\varepsilon + P)\nu}{1 - \nu^2}, \]

\[\nabla \cdot (r \sin(\theta) \nabla B) = 16\pi r \sin \theta B e^{2\zeta - 2\nu} P, \]

\[\zeta_{,\mu} = - \left\{ (1 - \mu^2) \left(1 + r \frac{B_{,r}}{B} \right)^2 + \left[\mu - (1 - \mu^2) \frac{B_{,r}}{B} \right]^2 \right\}^{-1} \left[\frac{1}{2} B^{-1} \left\{ r^2 B_{,rr} - [(1 - \mu^2) B_{,\mu}]_{,\mu} - 2\mu B_{,\mu} \right\} \right. \]

\[\times \left\{ -\mu + (1 - \mu^2) \frac{B_{,\mu}}{B} \right\} + r \frac{B_{,r}}{B} \left[\frac{1}{2} \mu + \mu r \frac{B_{,r}}{B} + \frac{1}{2} (1 - \mu^2) \frac{B_{,\mu}}{B} \right] + \frac{3}{2} \frac{B_{,\mu}}{B} \left[-\mu^2 + \mu (1 - \mu^2) \frac{B_{,\mu}}{B} \right] \]

\[- (1 - \mu^2) r \frac{B_{,\mu}}{B} \left(1 + r \frac{B_{,r}}{B} \right) - \mu r^2 (\nu_{,r})^2 - 2 (1 - \mu^2) r \nu_{,\mu} \nu_{,r} + \mu (1 - \mu^2) (\nu_{,\mu})^2 - 2 (1 - \mu^2) r^2 B^{-1} B_{,r} \nu_{,\mu} \nu_{,r} \]

\[+ (1 - \mu^2) B^{-1} B_{,\mu} \left[r^2 (\nu_{,r})^2 - (1 - \mu^2) (\nu_{,\mu})^2 \right] + (1 - \mu^2) B^2 e^{-4\nu} \left\{ \frac{1}{4} \mu r^4 (\omega_{,r})^2 + \frac{1}{2} (1 - \mu^2) r^3 \omega_{,\mu} \omega_{,r} \right. \]

\[- \frac{1}{4} \mu (1 - \mu^2) r^2 (\omega_{,\mu})^2 + \frac{1}{2} (1 - \mu^2) r A B^{-1} B_{,r} \omega_{,\mu} \omega_{,r} \frac{1}{4} (1 - \mu^2) r^2 B^{-1} B_{,\mu} \left[r^2 (\omega_{,r})^2 - (\mu^2) (\omega_{,\mu})^2 \right] \right\} \]
Hydrostationary Equilibrium equation

\[
P_{,i} + (\varepsilon + P) \left[\nu_{,i} + \frac{1}{1 - v^2} \left(-\nu v_{,i} + v^2 \frac{\Omega_{,i}}{\Omega - \omega} \right) \right] = 0,
\]

with \(v \) the fluid 3-velocity with respect to local ZAMO and \(\Omega \) the angular velocity in the coordinate frame.

\[\downarrow\]

One obtains models of self-gravitating, uniformly rotating stars

(RNS public code)

http://www.gravity.phys.uwm.edu/rns/
What about *differential rotation*?

Differential rotation in a newly born NS could be soon braked by different physical mechanism, which favour uniform rotation\(^{10}\).

After *the first year of formation*, adopting uniform rotation comports an error in the spacetime metric potentials of \(10^{-12}\).

Also *finite temperature* affects NS’s structure during the first year ➔ temperature effects could be neglected for bulk properties.

\(^{10}\) N. Stergioulas. Living Reviews in Relativity, 6:3, June 2003
Realistic EOS ➔ Three regions:

- **the CORE**: \(\varepsilon > \varepsilon_{\text{nuc}} \approx 3 \times 10^{14} \text{g cm}^{-3} \) (the *nuclear saturation value*)
 - RMF models\(^{11}\) + TM1, GM1 and NL3 (*nuclear parametrizations*);

- **the CRUST**: \(\varepsilon < \varepsilon_{\text{drip}} \approx 4.3 \times 10^{11} \text{g cm}^{-3} \) ("*neutron drip point*”)
 - BPS EOS;

- **“Intermediate region”**: \(\varepsilon_{\text{drip}} < \varepsilon < \varepsilon_{\text{nuc}} \)
 - local charge neutrality.

\(^{11}\) Dutra et al, PRC (2014)
Choosen set EOSs

Dashed curves: constant angular momentum sequences

Slowly rotating configurations seem to slightly deviate from static ones both in mass and in shape.

\[\epsilon = \sqrt{1 - \left(\frac{R_{\text{pol}}}{R_{\text{eq}}} \right)^2} \]

\[\epsilon_c = 10^{15} \text{ g cm}^{-3} \]

GM1
For a fixed mass, the lower the frequency the more the moment of inertia approaches the non-rotating value.

- Yagi, Kyutoku, Pappas, Yunes, Apostolatos, PRD (2014)

CORRECTION TERM
- Ryan, PRD (1995)
Defining the Kerr parameter as
\[a/M \equiv cJ/(GM^2), \]
We have noticed that the three EOSs implemented reach a common maximum of 0.7 (in the Keplerian regime) for this dimensionless angular momentum, also respected by other already known and used EOSs.

This universal behaviour has been already pointed out in literature (see e.g. Lo, Lin, ApJ (2011)).
Binding Energy

- **Static:**
 \[
 \frac{M_b}{M_\odot} \approx \frac{M}{M_\odot} + \frac{13}{200} \left(\frac{M}{M_\odot} \right)^2,
 \]
 Maximum relative error around 1% (near the critical static values of configurations);

- **Rotation:**
 \[
 \frac{M_b}{M_\odot} = \frac{M}{M_\odot} + \frac{13}{200} \left(\frac{M}{M_\odot} \right)^2 \left(1 - \frac{1}{130} j^{1.7} \right),
 \]
 Maximum relative error of 2% for all EOSs.

\[
j \equiv \frac{cJ}{GM_\odot^2},
\]

Secular Axisymmetric Instability Sequence

\[
M = M_{\max}^{J=0} (1 + k j^l), \quad \text{Mass of configurations lying on the secular axisymmetric sequence}
\]

<table>
<thead>
<tr>
<th>EOS</th>
<th>(M_{\max}^{J=0} [M_\odot])</th>
<th>(M_{\max}^{J\neq0} [M_\odot])</th>
<th>(f_{\max}) [kHz]</th>
<th>(k)</th>
<th>(l)</th>
<th>Max. Rel. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM1</td>
<td>2.20</td>
<td>2.62</td>
<td>1.34</td>
<td>0.017</td>
<td>1.61</td>
<td>0.33%</td>
</tr>
<tr>
<td>GM1</td>
<td>2.39</td>
<td>2.84</td>
<td>1.49</td>
<td>0.011</td>
<td>1.69</td>
<td>0.44%</td>
</tr>
<tr>
<td>NL3</td>
<td>2.81</td>
<td>3.38</td>
<td>1.40</td>
<td>0.006</td>
<td>1.68</td>
<td>0.45%</td>
</tr>
</tbody>
</table>

Published: F. Cipolletta, C. Cherubini, S. Filippi, J. A. Rueda, R. Ruffini. PRD (2015)
Marginally Stable Circular Orbits

\[V(r, \tilde{E}, \tilde{L}) = e^{2\lambda + \gamma} \left(\frac{dr}{dT} \right)^2 = e^{-\rho} \left(\tilde{E} - \omega \tilde{L} \right)^2 - e^{\gamma} - \frac{e^\rho}{r^2} \tilde{L}^2, \]

To obtain circular orbits, one must impose

\[V = V_r = 0, \]

And solving these equations give the radius for the orbit.

To find the minimum also this condition must be checked

\[V_{rr} \geq 0, \]
with respectively a maximum relative error of 1% and 0.3% where

\[
\tilde{E}_0 = \sqrt{8/9} \\
\tilde{L}_0 = 2\sqrt{3}
\]

(Schwarzschild solution)

Both co- and counter-rotating particles.
Considering a fixed angular momentum, it is possible to see that one obtains a minimum mass for which the ISCO/MBO is external to the configuration.

Fixing a mass there is a maximum angular momentum.

\[J = 0 \quad \Rightarrow \quad R_{mb}^{J=0} = \frac{6GM}{c^2} \]

- **TM1** \(\Rightarrow \) 1.78
- **GM1** \(\Rightarrow \) 1.61
- **NL3** \(\Rightarrow \) 1.67

\(R = \) radius of non-rotating star
EOS-dependent

\[\frac{M_{\text{min}}}{M_{\odot}} = \frac{M_{\text{min}}^{j=0}}{M_{\odot}} + c_1 j^{c_2}, \]

<table>
<thead>
<tr>
<th>EOS</th>
<th>(M_{\text{min}}^{j=0})</th>
<th>(c_1)</th>
<th>(c_2)</th>
<th>Max rel err (%)</th>
<th>(M_{\text{Max rel err}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL3</td>
<td>1.78</td>
<td>0.125</td>
<td>1.235</td>
<td>0.97</td>
<td>2.00</td>
</tr>
<tr>
<td>TM1</td>
<td>1.71</td>
<td>0.130</td>
<td>1.30</td>
<td>0.65</td>
<td>1.90</td>
</tr>
<tr>
<td>GM1</td>
<td>1.67</td>
<td>0.130</td>
<td>1.30</td>
<td>0.71</td>
<td>1.80</td>
</tr>
</tbody>
</table>

Fixing \(j\), one obtain a minimum mass, \(M_{\text{min}}\), for which the ISCO/MBO is external

In Preparation: F. Cipolletta, J. A. Rueda, R. Ruffini. *On the mostly bound circular orbit around rapidly rotating neutron stars.*

ISCO/MBO – Results and Fittings
Example of Application

An example of application is within an *hypercritical accretion scenario of a binary-driven Hypernova*. Consider a CO core-NS binary system\(^\text{12}\), where it has been shown that GRB explosion and BH formation can be obtained:

- CO core explode in a SN, forming a NS (material is ejected)
- Relation for baryonic mass as function of NS mass and angular momentum (binding energy)
- Minimum mass of the NS which allows an external ISCO/MBO
- Ejected materials have enough angular momentum to circularize around NS, before collapse on its surface
- Angular momentum conservation \Rightarrow NS spin-up
- If the mass of NS is enough, the accretion process will lead to secular instability \Rightarrow Collapse
- Conditions to have the formation of a BH after a GRB explosion

CONCLUSIONS AND PERSPECTIVES – RELATIVISTIC

• Structure of realistic NSs config.s has been reconstructed
• Already known NS constraints and results have been confirmed with our set of EOSs
• Fitting formulas (both universal and EOS-dependent) have been obtained

• PERSPECTIVES:
 o Implement new realistic EOS
 o Global charge neutrality (instead of local)
 o Astrophysical applications
Thank you