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3. Brief description

One of the most active field of research has been to analyze a general ap-
proach to compact stars e.g. white dwarfs and neutron stars, based on the
Thomas-Fermi ultrarelativistic equations amply adopted in the study of su-
perheavy nuclei. The aim is to have a unified approach for nuclei, for su-
perheavy nuclei up to atomic numbers of the order of A ∼ 103–106, and for
macroscopic objects A ∼ 1057 as white dwarfs and neutron stars which are
composed partly or fully by nuclear matter.

In the earliest description of neutron stars in the works of Tolman (1939)
and Oppenheimer and Volkoff (1939) only a gas of neutrons was considered
and the equation of equilibrium (hereafter TOV equations) was written in
the Schwarzschild metric. They considered the model of a degenerate gas of
neutrons to hold from the center to the border, with the density monotoni-
cally decreasing away from the center.

In the intervening years, a more realistic model has been presented chal-
lenging the original considerations of Tolman (1939) and Oppenheimer and
Volkoff (1939). The TOV equations considered the existence of neutrons all
the way to the surface of the star. The presence of neutrons, protons and elec-
trons in β-equilibrium were instead introduced by Harrison et al. (1965). Still
more important, the neutron stars have been shown to be composed of two
sharply different components: the core at nuclear and supra-nuclear densi-
ties consisting of degenerate neutrons, protons and electrons in β-equilibrium
and a crust of white dwarf like material, namely a nuclei lattice in a back-
ground of degenerate electrons (see Harrison et al. (1965); Baym et al. (1971a)
for details). Further works describing the nuclear interactions where later
introduced. Clearly all these considerations departed profoundly from the
TOV assumption of a neutron star made only of neutrons.

The matching between the core and the crust is still today an open issue in
neutron star physics. In order to handle with this interesting problem, a step-
by-step procedure is needed. In such a case, the neutron, proton, and electron
fluid is confined within the core radius due to the compression exerted by the
crust component of the neutron star.

In the case of white dwarfs, no fully consistent theory of the equilibrium
of the electron-nuclei lattice system within general relativity exists. Such a
theory needs the complete description of the electron-electron and electron-
nucleus Coulomb interactions within a self-consistent relativistic framework.

The study of both white dwarfs and neutron stars requires the interplay
between nuclear and atomic physics together with relativistic field theories
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3. Brief description

e.g. general relativity, quantum electrodynamics, quantum chromodynamics,
as well as particle physics. The works done and currently being developed
within our group can be divided into three topics:

1. Nuclear and Atomic Astrophysics

2. White Dwarfs Physics and Astrophysics

3. Neutron Stars Physics and Astrophysics

3.1. Nuclear and Atomic Astrophysics

By Nuclear and Atomic Astrophysics we mean the study of nuclear and
atomic physics related to astrophysical systems as white dwarfs and neutron
stars. The aim is to have a unified approach for nuclei, for superheavy nuclei
up to atomic numbers of the order of 105–106, and for what we have called
“nuclear matter cores of stellar dimensions”, which are

• characterized by atomic number of the order of 1057;

• composed by a degenerate fluid of neutrons, protons and electrons in
β-equilibrium;

• globally neutral configurations;

• expected to be kept at nuclear density by self gravity.

It is known that the Thomas-Fermi model has been extensively applied in
atomic physics, also has been applied extensively in atomic physics in its rel-
ativistic form as well as in the study of atoms with heavy nuclei (see Gombás
(1949) for instance). Similarly there have been considerations of relativis-
tic Thomas-Fermi model for quark stars pointing out the existence of critical
electric fields on their surfaces Alcock et al. (1986). Similar results have also
been obtained in the transition at very high densities, from the normal nu-
clear matter phase in the core to the color-flavor-locked phase of quark mat-
ter in the inner core of hybrid stars Alford et al. (2001). However, no example
exists to the application of the electromagnetic Thomas-Fermi model to white
dwarfs and neutron stars.

The analysis of superheavy nuclei has historically represented a major field
of research, developed by Prof. V. Popov and Prof. W. Greiner and their
schools. This same problem was studied in the context of the relativistic
Thomas-Fermi equation also by R. Ruffini and L. Stella, already in the ’80s.
The recent approach was started with the Ph.D. Thesis of M. Rotondo and
has shown the possibility to extrapolate this treatment of superheavy nuclei
to the case of nuclear matter cores of stellar dimensions (see App. A.3). The
very unexpected result has been that also around these massive cores there is
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3.1. Nuclear and Atomic Astrophysics
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Figure 3.1.: Upper panel: electric field around the surface of a nuclear matter
core of stellar dimensions in units of the critical field Ec. Lower panel: cor-
responding sharp increasing of the electron Coulomb potential −eV. Here
Rc denotes the core radius and λe = h̄/(mec) is the electron Compton wave-
length.

the distinct possibility of having an electromagnetic field close to the critical
value

Ec =
m2

e c3

eh̄
,

although localized in a very narrow shell of the order of the electron Compton
wavelength (see Fig. 3.1).

The welcome result has been that all the analytic work developed by Prof. V. Po-
pov and the Russian school can be applied using scaling laws satisfied by the
relativistic Thomas-Fermi equation to the case of nuclear matter cores of stel-
lar dimensions, if the β-equilibrium condition is properly taken into account
(see App. A.1 and A.3). This has been the result obtained and published by
Ruffini, Rotondo and Xue already in 2007. Since then, a large variety of prob-
lems has emerged, which have seen the direct participation at ICRANet of
Prof. Greiner, Prof. Popov, and Prof. ’t Hooft.

One of the crucial issues to be debated is the stability of such cores under
the competing effects of self-gravity and Coulomb repulsion. In App. A.1
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3. Brief description

it has been demonstrated their stability against nuclear fission, as opposed
to the case of heavy nuclei. In particular, on the basis of Newtonian gravi-
tational energy considerations it has been found the existence of a possible

new island of stability for mass numbers A > AR = 0.039
(

Np

A

)1/2 (mPlanck
mn

)3
,

where Np is the number of protons, A is the total number of baryons, mn is

the neutron mass and mPlanck = (h̄c/G)1/2 is the Planck mass. The equilib-
rium against Coulomb repulsion originates now from the combined effect of
the screening of the relativistic electrons, of the surface tension due to strong
interactions, and of the gravitational interaction of these massive cores.

By enforcing the condition of β-equilibrium, it has been also obtained a
generalization to the relation between the mass number A and atomic num-
ber Np which encompasses phenomenological expressions (see App. A.1 and
A.4 for details).

All these considerations have been made for an isolated core with constant
proton density whose boundary has been sharply defined by a step function.
No external forces are exerted. Consequently, the Fermi energy of the elec-
trons has been assumed to be equal to zero.

Different aspects concerning these macroscopic systems have been also
considered. For instance, the analysis of the electron distribution around such
cores in both the case of global charge neutrality and the case of not global
charge neutrality has been presented (see e.g. App. A.5).

The assumption of a sharp proton density profile has been relaxed and,
consequently, a smooth surface modeled by a Woods-Saxon-like proton dis-
tribution has been introduced (see App. A.6 for details). The presence of
overcritical electric fields close to their surface has been confirmed also in
this more general case.

The classical and semi-classical energy states of relativistic electrons boun-
ded by a massive and charged core with the charge-mass-ratio Q/M and
macroscopic radius Rc are discussed (see App. A.7). It is shown that the en-
ergies of semi-classical (bound) states can be much smaller than the nega-
tive electron mass-energy (−mc2), and thus energy-level crossing to negative
energy continuum occurs. It has been then advanced the possibility that in
neutral cores with equal proton and electron number, the configuration of rel-
ativistic electrons in these semi-classical (bound) states should be stabilized
by photon emission.

Another topic of current interest concerns the case of rotating nuclear mat-
ter cores of stellar dimensions. The induced magnetic field by electric field ro-
tation has been recently obtained (see App. A.8). Such analysis has been done
in the framework of classical electrodynamics under the assumption of uni-
form rigid rotation of the macroscopic nuclear cores in the non-compressed
case. For a period of rotation ∼ 10 ms, overcritical magnetic fields has been
obtained near the surface of the configuration.
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3.1. Nuclear and Atomic Astrophysics

The existence of the scaling laws of the ultrarelativistic Thomas-Fermi equa-
tion (see App. A.1) has led to the very exciting possibility of having macro-
scopic configurations of nuclear matter in β-equilibrium exhibiting strong
electric fields on their surfaces. In order to go one step further towards a
more realistic description of macroscopic configurations as white-dwarfs and
neutron stars, further improvements and extensions must be applied to the
starting model.

It is therefore interesting, in order to approach both the complex problem
of a neutron star core and its interface with the neutron star crust and the
problem of the equilibrium of gas in a white dwarf taking into account all
possible global electromagnetic interactions between the nucleus and the rel-
ativistic electrons, to extend the model to the compressed case in which the
Fermi energy of electrons turns to be positive.

The analysis of globally neutral and compressed configurations composed
by a nucleus made of relativistic degenerate neutrons and protons surrounded
by relativistic degenerate electrons in β-equilibrium has been recently accom-
plished. This work has generalized the Feynman-Metropolis-Teller treatment
of compressed atoms to relativistic regimes, and the concept of compressed
nuclear matter cores of stellar dimensions has been introduced (see App. A.2
for details).

In the relativistic generalization of the Feynman-Metropolis-Teller appro-
ach, the equation to be integrated is the relativistic Thomas-Fermi equation.
The integration of this equation does not admit any regular solution for a
point-like nucleus and both the nuclear radius and the nuclear composition
have necessarily to be taken into account. This introduces a fundamental
difference from the non-relativistic Thomas-Fermi model where a point-like
nucleus was adopted.

Due to the introduction of the concept of Wigner-Seitz cells, the study of
degenerate compressed matter in white dwarfs can be addressed. This prob-
lem presents, still today, open issues of great interest such as the equilibrium
of the electron gas and the associated nuclear component, taking into account
the electromagnetic, the gravitational and the weak interactions formulated
in a correct special and general relativistic framework.

A complete analysis of the properties of such configurations as a function
of the compression can be duly done through the relativistic generalization of
the Feynman-Metropolis-Teller approach (see App. A.2 for details). It is then
possible to derive a consistent equation of state for compressed matter which
generalizes both the uniform free-electron fluid approximation, adopted for
instance by Chandrasekhar (1931b) in his famous treatment of white-dwarfs,
and the well-known work of Salpeter (1961) which describes the electrody-
namical and relativistic effects by a sequence of approximations. Apart from
taking into account all possible electromagnetic and special relativistic correc-
tions to the equation of state of white-dwarf matter, the new equation of state,
which incorporates the β-equilibrium condition, leads to a self-consistent cal-
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3. Brief description

culation of the onset for inverse β-decay of a given nuclear composition as
function of the Fermi energy of electrons or equivalently, as a function of the
density of the system, which is very important for the analysis of the stability
of white dwarfs against gravitational collapse (see App. B.1).

In neutron star cores, nuclear matter is under very extreme conditions of
density and pressure. The importance of the strong interactions between
nucleons at such extreme pressures it has been known for years (see e.g.
Cameron (1970); Shapiro and Teukolsky (1983)). However, due to the absence
of a complete theory of the strong interactions, and due to the impossibility
of performing terrestrial experiments with similar extreme pressure-density
conditions, the equation of state of nuclear matter at densities larger than the
nuclear saturation density ∼ 2.7 × 1014 g/cm3, is still today unknown.

The construction of nuclear equations of state within a fully consistent for-
mulation of the equations of equilibrium in general relativity both for white
dwarfs and neutron stars (see below) is an active topic of research within our
group. In the recent past, some Ph. D. Theses have been devoted to this topic
e.g. the doctoral works of J. Rueda and D. Pugliese. Currently, such a topic is
being covered by the Ph. D. works of R. Belvedere, K. Boshkayev, M. Haney,
S. Martins de Carvalho, C. Arguëlles, Y. Bin and J. Pereira. We summarized
these activities below.

3.2. White Dwarf Physics and Astrophysics

A branch of research which is currently under continuous evolution corre-
sponds to the extension to the case of general relativity, all the previous the-
ory about the Thomas-Fermi model and the relativistic Thomas-Fermi model,
applied initially to the study of heavy nuclei, superheavy nuclei as well as to
the theoretical hypothesis of nuclear matter cores of stellar dimensions. The
aim is to construct a self-consistent theory of self-gravitating systems obeying
relativistic quantum statistics, electromagnetic, weak and strong interactions
in the framework of general relativity, from which it is possible to study the
properties of compact objects e.g. white dwarfs and neutron stars.

The recent generalization of the Feynman-Metropolis-Teller treatment to
relativistic regimes, which led to a new equation of state of white-dwarf mat-
ter (see App. A.2), has been recently used to construct equilibrium configura-
tions of white-dwarfs in general relativity (see App. B.1).

The description of the inverse β-decay within the relativistic Feynman-
Metropolis-Teller equation of state in conjunction with general relativity, leads
to a self-consistent calculation of the critical mass of white-dwarfs (see App. B.1
for details). The numerical value of the mass, of the radius, and of the crit-
ical mass of white-dwarfs turn to be smaller with respect to the ones ob-
tained with approximate equations of state (see e.g. Hamada and Salpeter
(1961)). Therefore, the analysis of compressed atoms following the relativis-
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tic Feynman-Metropolis-Teller treatment has important consequences in the
determination of the mass-radius relation of white dwarfs, leading to the pos-
sibility of a direct confrontation of these results with observations, in view of
the current great interest for the cosmological implications of the type Ia su-
pernovae.

The generalization of the above general relativistic theory of white dwarfs
to the case of rotation is part of the thesis work of K. Boshkayev, see App. B.2
for details. The entire family of uniformly rotating stable white dwarfs has
been already obtained by studying the mass-shedding, the inverse β-decay,
as well as the axisymmetric instabilities. Both the maximum mass and the
minimum(maximum) rotation period(frequency) have been obtained for se-
lected nuclear compositions. This work is relevant for the theory of type Ia
supernovae as well as for the recent proposal of describing the Soft-Gamma-
Ray Repeaters (SGRs) and the Anomalous X-Ray Pulsars (AXPs) as rotation
powered white dwarfs, see App. B.3.

SGRs and AXPs are a class of compact objects that show interesting obser-
vational properties: rotational periods in the range P ∼ (2–12) s, a narrow
range with respect to the wide range of ordinary pulsars P ∼ (0.001–10) s;
spin-down rates Ṗ ∼ (10−13–10−10), larger than ordinary pulsars Ṗ ∼ 10−15;
strong outburst of energies ∼ (1041–1043) erg, and for the case of SGRs, gi-
ant flares of even large energies ∼ (1044–1047) erg, not observed in ordinary
pulsars.

The recent observation of SGR 0418+5729 with a rotational period of P =
9.08 s, an upper limit of the first time derivative of the rotational period
Ṗ < 6.0 × 10−15, and an X-ray luminosity of LX = 6.2 × 1031 erg/s, promises
to be an authentic Rosetta Stone, a powerful discriminant for alternative mod-
els of SGRs and AXPs. The loss of rotational energy of a neutron star with
this spin-down rate Ṗ cannot explain the X-ray luminosity of SGR 0418+5729,
excluding the possibility of identifying this source as an ordinary spin-down
powered pulsar. The inferred upper limit of the surface magnetic field of SGR
0418+5729 B < 7.5 × 1012 G, describing it as a neutron star within the mag-
netic braking scenario, is well below the critical field challenging the power
mechanism based on magnetic field decay purported in the magnetar sce-
nario.

We have shown that the observed upper limit on the spin-down rate of
SGR 0418+5729 is, instead, perfectly in line with a model based on a massive
fast rotating highly magnetized white dwarf of mass M = 1.4M⊙, radius
R = 103 km, and moment of inertia I ≈ 1049 g cm2. We analyze the energetics
of all SGRs and AXPs including their outburst activities and show that they
can be well explained through the change of rotational energy of the white
dwarf associated to the observed sudden changes of the rotational period,
the glitches. All SGRs and AXPs can be interpreted as rotating white dwarfs
that generate their energetics from the rotational energy and therefore there
is no need to invoke the magnetic field decay of the magnetar model. Details

1299



3. Brief description

can be found in App. B.3.

3.3. Neutron Star Physics and Astrophysics

Concerning neutron stars, most of effort have been given to the construction
of self-consistent solutions of the equations of equilibrium for neutron stars in
general relativity taking into account the traditionally neglected electromag-
netic interaction. In nearly all the scientific literature on neutron stars, a “local
approach”, where the equation of state of neutron star matter is constructed
ignoring global gravitational and Coulombian effects by assuming not only
flat space but also local charge neutrality, has been traditionally used. The
gravitational effects are then taken into account by embedding such an equa-
tion of state into the TOV equations of hydrostatic equilibrium.

We have introduced a new approach which thanks to the existence of scal-
ing laws can apply to compressed atoms as well as to massive nuclear matter
cores of stellar dimensions. This approach on the compressed atom has al-
ready given a new contribution in the study of white dwarfs. It represents
the first self-consistent calculation taking into due account the electromag-
netic contribution in a relativistic treatment of the Thomas-Fermi equation,
within global formulation of the equilibrium of white dwarfs in general rela-
tivity.

The application of the above results to the case of neutron stars is much
more complex and it has been approached stepwise. As a first step we have
considered the application of this novel approach to the case of a system of
neutrons, protons, and electrons in β-equilibrium at zero temperatures within
general relativity (see App. C.1). The crucial role of the generalized Fermi en-
ergy of particles, for short Klein potentials, and their constancy on the entire
equilibrium configuration has been outlined. Such a solution, although does
not represent a realistic model for a neutron star, contains all the essential
physics of the phenomenon of gravito-polarization in neutron star interiors:
the existence of an electric potential and consequently an electric field over
the entire configuration has been there evidenced.

We have there proved, for the case of this simplified example where strong
interactions are neglected, that the traditional approach of describing the sys-
tem imposing the condition of local charge neutrality and solving the corre-
sponding TOV equations is conceptually inconsistent. We have then sub-
stitute the condition of local charge neutrality with the condition of global
charge neutrality and derived the correct equations within the Einstein-Maxwell-
Thomas-Fermi system. The boundary conditions are also different from a
traditional Cauchy data with the values of the functions and first derivatives
at the center into a boundary condition at the center and delicate eigenvalue
problem at the boundary determining the condition of charge neutrality at
the border (see App. C.1). The conceptual differences and the alternative
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mathematical equations of the two approaches, the ones imposing local ver-
sus global charge neutrality, lead to the presence of additional electrodynam-
ical global structures. However, in this specific simple example, they do not
give significant quantitative differences in the mass-radius relation for the
equilibrium configurations. A very different situation occurs when strong
interactions are also taken into account.

The next step has been to introduce self-consistently the strong interactions
in the construction of the equilibrium configurations. We have indeed re-
cently generalized the Einstein-Maxwell-Thomas-Fermi equations to the case
of strong interactions, see App. C.2 for details. There the major aim has been
to prove the constancy of the Klein potentials in the case in which the nuclear
interactions are described by a Lagrangian including in addition to the grav-
itational, electromagnetic, and weak interactions, also the presence of σ, ω,
and ρ virtual mesons that mediate the nuclear interactions.

We have also extended to finite temperatures the theoretical treatment of
gravito-polarization for a system of neutrons, protons and electrons in β-
equilibrium, taking into account strong interactions modeled through the ex-
change of σ, ω and ρ virtual mesons (see App. C.3 for details). The crucial
role of the Klein potentials of particles is outlined as well as the condition
of isothermality of Tolman. We have shown that, the gravito-polarization
effect although energetically much weaker than the corresponding gravita-
tional and thermal effects, do survive in the case of finite temperatures. Their
role, when strong interactions are considered, is of fundamental astrophysi-
cal importance.

Many interesting aspects of the physics and astrophysics of neutron stars
are the research topic of the Ph. D. thesis of R. Belvedere and were part of
the Ph. D. thesis of D. Pugliese. The construction of realistic neutron star
with core and crust satisfying global (but not local) charge neutrality has been
already accomplished (see App. C.4). The solutions lead to a new structure
of the star: a positively charged core at supranuclear densities surrounded by
an electronic distribution of thickness ∼ h̄/(mec) ∼ 102h̄/(mπc) of opposite
charge, as well as a neutral crust at lower densities. Inside the core there is
a Coulomb potential well of depth ∼ mπc2/e. The constancy of the Klein
potentials in the transition from the core to the crust, impose the presence
of an overcritical electric field ∼ (mπ/me)2Ec. For each central density, an
entire family of core-crust interface boundaries can be constructed, each of
them reaching the neutrality point at a different electron density at the edge
of the crust. This leads consequently to crusts with masses and thickness
smaller than the ones obtained from the traditional TOV treatment, resulting
in a novel neutron star mass-radius relation.

Additional details from some other works we have published on this sub-
ject can be also found in Apps. C.5–C.9.

The entire formulation of the equilibrium equations of rotating neutron
stars as well as their numerical integration are part of the K. Boshkayev’s
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Ph. D. thesis. M. Haney is studying the problem of the matching conditions
between the core and the crust of neutron stars taking into account the novel
electrodynamical structure described by the Einstein-Maxwell-Thomas-Fermi
equations. This work implies also the generalization of the well-known Har-
tle & Thorne method for the construction of rotating stars, in order to allow
the presence of the Coulomb potential and density discontinuities. As a by
product, also the pulsational modes of these neutron star configurations with
strong electric fields in the core-crust boundary can be duly analyzed.

S. Martins de Carvalho is working on the influence of the temperature on
the properties of the core and the crust of these novel neutron star equilib-
rium configurations. The traditional study of neutron star cooling has been
generally applied to quite old objects as the Crab Pulsar (957 years) or the
Central Compact Object in Cassiopeia A (330 years) with an observed surface
temperature ∼ 106 K. However, recent observations of the late (t = 108–109

s) emission of Supernovae associated to GRBs (GRB-SN) show a distinctive
emission in the X-ray regime consistent with temperatures ∼ 107–108 K. Simi-
lar features have been also observed in two Type Ic Supernova SN 2002ap and
SN 1994I not associated to GRBs. We have recently advanced the possibility
that such a late X-ray emission observed in GRB-SN and in isolated SN is as-
sociated to a hot neutron star just formed in the Supernova event, what we
have defined as a neo-neutron star (see App. C.10 for details). The traditional
thermal processes taking place in the neutron star crust might be enhanced
by the extreme high temperature conditions of neo-neutron star and there-
fore the study of the thermal behavior especially of the crust of neo-neutron
stars deserve the appropriate attention.
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4. Publications (before 2010)

4.1. Refereed Journals

1. R. Ruffini, M. Rotondo and S.-S. Xue,Electrodynamics for Nuclear Matter
in Bulk, International Journal of Modern Physics D 16, 1 (2007).

A general approach to analyze the electrodynamics of nuclear matter in bulk

is presented using the relativistic Thomas-Fermi equation generalizing to the

case of N ≃ (mPlanck/mn)3 nucleons of mass mn the approach well tested in

very heavy nuclei (Z ≃ 106). Particular attention is given to implement the

condition of charge neutrality globally on the entire configuration, versus the

one usually adopted on a microscopic scale. As the limit N ≃ (mPlanck/mn)3

is approached the penetration of electrons inside the core increases and a rel-

atively small tail of electrons persists leading to a significant electron density

outside the core. Within a region of 102 electron Compton wavelength near the

core surface electric fields close to the critical value for pair creation by vacuum

polarization effect develop. These results can have important consequences on

the understanding of physical process in neutron stars structures as well as on

the initial conditions leading to the process of gravitational collapse to a black

hole.

2. R. Ruffini and L. Stella, Some comments on the relativistic Thomas-Fermi
model and the Vallarta-Rosen equation, Physics Letters B 102, 442 (1981).

Some basic differences between the screening of the nuclear charge due to a

relativistic cloud of electrons in a neutral atom and the screening due to vac-

uum polarization effects induced by a superheavy ion are discussed.

3. J. Ferreirinho, R. Ruffini and L. Stella, On the relativistic Thomas-Fermi
model, Physics Letters B 91, 314 (1980).

The relativistic generalization of the Thomas-Fermi model of the atom is de-

rived. It approaches the usual nonrelativistic equation in the limit Z ≪ Zcrit,

where Z is the total number of electrons of the atom and Zcrit = (3π/4)1/2α−3/2

and α is the fine structure constant. The new equation leads to the break-

down of scaling laws and to the appearance of a critical charge, purely as

a consequence of relativistic effects. These results are compared and con-

trasted with those corresponding to N self-gravitating degenerate relativistic

fermions, which for N ≈ Ncrit = (3π/4)1/2(m/mp)3 give rise to the concept of
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a critical mass against gravitational collapse. Here m is the mass of the fermion

and mp = (h̄c/G)1/2 is the Planck mass.

4.2. Conference Proceedings

1. R. Ruffini, M. Rotondo and S.-S. Xue, Neutral nuclear core vs super charged
one, Proceedings of the 11th Marcel Grossmann Meeting, Eds. R. Jantzen,
H. Kleinert, R. Ruffini, World Scientific, Singapore (2008).

Based on the Thomas-Fermi approach, we describe and distinguish the elec-

tron distributions around extended nuclear cores: (i) in the case that cores are

neutral for electrons bound by protons inside cores and proton and electron

numbers are the same; (ii) in the case that super charged cores are bare, elec-

trons (positrons) produced by vacuum polarization are bound by (fly into)

cores (infinity).

2. B. Patricelli, M. Rotondo and R. Ruffini, On the Charge to Mass Ratio of
Neutron Cores and Heavy Nuclei, AIP Conference Proceedings 966, 143–
146 (2008).

We determine theoretically the relation between the total number of protons

Np and the mass number A (the charge to mass ratio) of nuclei and neutron

cores with the model recently proposed by Ruffini et al. (2007) and we compare

it with other Np versus A relations: the empirical one, related to the Periodic

Table, and the semi-empirical relation, obtained by minimizing the Weizsäcker

mass formula. We find that there is a very good agreement between all the

relations for values of A typical of nuclei, with differences of the order of per

cent. Our relation and the semi-empirical one are in agreement up to A ≈
104 for higher values, we find that the two relations differ. We interpret the

different behavior of our theoretical relation as a result of the penetration of

electrons (initially confined in an external shell) inside the core, that becomes

more and more important by increasing A; these effects are not taken into

account in the semi-empirical mass-formula.

3. M. Rotondo, R. Ruffini and S.-S Xue, On the Electrodynamical properties of
Nuclear matter in bulk, AIP Conference Proceedings 966, 147–152 (2008).

We analyze the properties of solutions of the relativistic Thomas-Fermi equa-

tion for globally neutral cores with radius of the order of R ≈ 10 Km, at

constant densities around the nuclear density. By using numerical tecniques

as well as well tested analytic procedures developed in the study of heavy

ions, we confirm the existence of an electric field close to the critical value

Ec = m2
e c3/eh̄ in a shell ∆R ≈ 104h̄/mπc near the core surface. For a core of

≈ 10 Km the difference in binding energy reaches 1049 ergs. These results can

be of interest for the understanding of very heavy nuclei as well as physics of
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neutron stars, their formation processes and further gravitational collapse to a

black hole.

4. B. Patricelli, M. Rotondo, J. A. Rueda H. and R. Ruffini, The Electrody-
namics of the Core and the Crust components in Neutron Stars, AIP Confer-
ence Proceedings 1059, 68–71 (2008).

We study the possibility of having a strong electric field (E) in Neutron Stars.

We consider a system composed by a core of degenerate relativistic electrons,

protons and neutrons, surrounded by an oppositely charged leptonic compo-

nent and show that at the core surface it is possible to have values of E of the

order of the critical value for electron-positron pair creation, depending on the

mass density of the system. We also describe Neutron Stars in general relativ-

ity, considering a system composed by the core and an additional component:

a crust of white dwarf - like material. We study the characteristics of the crust,

in particular we calculate its mass Mcrust. We propose that, when the mass

density of the star increases, the core undergoes the process of gravitational

collapse to a black hole, leaving the crust as a remnant; we compare Mcrust

with the mass of the baryonic remnant considered in the fireshell model of

GRBs and find that their values are compatible.

5. R. Ruffini, The Role of Thomas-Fermi approach in Neutron Star Matter, Pro-
ceedings of the 9th International Conference “Path Integrals-New trends
and perspectives”, Eds. W. Janke and A. Pelster, World Scientific, Sin-
gapore (2008).

The role of the Thomas-Fermi approach in Neutron Star matter cores is pre-

sented and discussed with special attention to solutions globally neutral and

not fulfilling the traditional condition of local charge neutrality. A new sta-

ble and energetically favorable configuration is found. This new solution can

be of relevance in understanding unsolved issues of the gravitational collapse

processes and their energetics.

6. R. Ruffini, M. Rotondo, S.-S. Xue, The Thomas-Fermi Approach and Gamma-
Ray Bursts, AIP Conference Proceedings 1053, 243-252 (2008).

The energy extraction process from a black hole which is considered at the

basis of modeling Gamma-Ray Bursts appear to be mediated by an electron-

positron plasma created in an overcritical electric field. The role of the Thomas-

Fermi approach in Neutron Star matter cores is presented and discussed with

special attention to solutions globally neutral and not fulfilling the traditional

condition of local charge neutrality. A new stable configuration is found with a

field well above the critical value, confined to a shell close to the surface with a

thickness of a few electron Compton wavelength. This new solution can be of

relevance in understanding unsolved issues of the gravitational collapse pro-

cesses and their energetics leading to the formation of a Kerr-Newman black

hole.
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7. Jorge A. Rueda, B. Patricelli, M. Rotondo, R. Ruffini, and S. S. Xue, The
Extended Nuclear Matter Model with Smooth Transition Surface, Proceed-
ings of the Third Stueckelberg Workshop on Relativistic Field Theories,
Pescara-Italy (2008).

The existence of electric fields close to their critical value Ec = m2
e c3/(eh̄) has

been proved for massive cores of 107 up to 1057 nucleons using a proton dis-

tribution of constant density and a sharp step function at its boundary. We

explore the modifications of this effect by considering a smoother density pro-

file with a proton distribution fulfilling a Woods-Saxon dependence. The oc-

currence of a critical field has been confirmed. We discuss how the location of

the maximum of the electric field as well as its magnitude is modified by the

smoother distribution.
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5.1. Refereed Journals

1. R. Belvedere, D. Pugliese, Jorge A. Rueda, R. Ruffini, and S.-S. Xue,
Neutron star equilibrium configurations within a fully relativistic theory with
strong, weak, electromagnetic, and gravitational interactions, submitted to
Nuclear Physics A.

We formulate the equations of equilibrium of neutron stars taking into ac-

count strong, weak, electromagnetic, and gravitational interactions within the

framework of general relativity. The nuclear interactions are described by the

exchange of the σ, ω, and ρ virtual mesons. The equilibrium conditions are

given by our recently developed theoretical framework based on the Einstein-

Maxwell-Thomas-Fermi equations along with the constancy of the general rel-

ativistic Fermi energies of particles, the “Klein potentials”, throughout the con-

figuration. The equations are solved numerically in the case of zero tempera-

tures and for selected parameterizations of the nuclear models. The solutions

lead to a new structure of the star: a positively charged core at supranuclear

densities surrounded by an electronic distribution of thickness ∼ h̄/(mec) ∼
102h̄/(mπc) of opposite charge, as well as a neutral crust at lower densities.

Inside the core there is a Coulomb potential well of depth ∼ mπc2/e. The con-

stancy of the Klein potentials in the transition from the core to the crust, impose

the presence of an overcritical electric field ∼ (mπ/me)2Ec, the critical field be-

ing Ec = m2
e c3/(eh̄). The electron chemical potential and the density decrease,

in the boundary interface, until values µcrust
e < µcore

e and ρcrust < ρcore. For

each central density, an entire family of core-crust interface boundaries and,

correspondingly, an entire family of crusts with different mass and thickness,

exist. The configuration with ρcrust = ρdrip ∼ 4.3 × 1011 g/cm3 separates neu-

tron stars with and without inner crust. We present here the novel neutron

star mass-radius for the especial case ρcrust = ρdrip and compare and contrast it

with the one obtained from the traditional Tolman-Oppenheimer-Volkoff treat-

ment.

2. M. Rotondo, Jorge A. Rueda, R. Ruffini, and S.-S. Xue, On the constitutive
equations of a self-gravitating system of neutrons, protons and electrons in β-
equilibrium at finite temperatures, submitted to Physical Review D.

The relativistic Thomas-Fermi equation has been the essential theoretical tool

to generalize the Feynman-Metropolis-Teller treatment of compressed atoms,
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crucial for a complete general relativistic description of white dwarfs. These

equations appear to be equally important to the analysis of neutron stars where

the treatment leads to a generalization of the classical work on gravito-polarization.

Such a treatment becomes considerably more difficult than the Newtonian

one and the general relativistic treatment for neutral fermions described by

the Tolman-Oppenheimer-Volkoff (TOV) equations. It involves the electrody-

namics and general relativistic effects describable by the Einstein-Maxwell sys-

tem of equations coupled to the general relativistic Thomas-Fermi equations.

We extend here to finite temperatures the theoretical treatment of gravito-

polarization for a system of neutrons, protons and electrons in β-equilibrium,

taking into account strong interactions modeled through the exchange of σ,

ω and ρ virtual mesons. The crucial role of the Klein potentials of particles

is outlined as well as the condition of isothermality of Tolman. The gravito-

polarization effect, although energetically much weaker than the correspond-

ing gravitational and thermal effects, do survive in the case of finite tempera-

tures. Their role, when strong interactions are considered, is of fundamental

astrophysical importance.

3. M. Malheiro, Jorge A. Rueda, and R. Ruffini, SGRs and AXPs as rotation
powered massive white dwarfs, submitted to Publications of the Astronom-
ical Society of Japan.

The recent observations of SGR 0418+5729 offer an authentic Rosetta Stone

for deciphering the energy source of Soft Gamma Ray Repeaters (SGRs) and

Anomalous X-ray Pulsars (AXPs). The main contention is to determine if

SGRs and AXPs are strongly magnetized neutron stars originating their en-

ergy from the decay of overcritical magnetic fields in the magnetar model or

if instead their energetics can be explained by using the rotational energy loss

of a massive white dwarf. We show how a consistent model for SGRs and

AXPs can be expressed in terms of canonical physics and astrophysics within

rotation powered white dwarfs in total analogy with the case of pulsars orig-

inating their energy from the rotational energy of the neutron stars. The pi-

oneering works of M. Morini et al. (1988) and of B. Paczynski (1990) on 1E

2259+586 are extended and further developed to describe the observed prop-

erties of SGRs and AXPs by assuming spin-down powered massive, fast ro-

tating, and highly magnetized white dwarfs. We show that SGR 0418+5729

is well described by a spin-down powered white dwarf and, within such a

model, we obtain the theoretical prediction for the lower limit of its spin-down

rate, Ṗ ≥ LXP3/(4π2 I) = 1.18 × 10−16 where I is the moment of inertia of

the white dwarf. We also analyze the energetics of SGRs and AXPs includ-

ing their outburst activities and show that they can be well explained through

the change of rotational energy of the white dwarf associated to the observed

sudden changes of the rotational period, the glitches. All SGRs and AXPs can

be interpreted as rotating white dwarfs that generate their energetics from the

rotational energy and therefore there is no need to invoke the magnetic field
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decay of the magnetar model. The important observational campaigns carried

out by the X-ray Japanese satellite Suzaku on AE Aquarii as well as the corre-

sponding theoretical work by Japanese groups and recent results of the Hubble

Space Telescope, give crucial information for our theoretical model. Follow-on

missions of Hubble Telescope and VLT are highly recommended.

4. K. Boshkayev, Jorge A. Rueda, and R. Ruffini, On the maximum mass
and minimum period of general relativistic uniformly rotating white dwarfs,
submitted to Astrophysical Journal Letters.

The properties of rotating white dwarfs are analyzed within the framework of

general relativity. The Hartle’s formalism is applied to construct self-consistently

the internal and external solutions to the Einstein equations. Within this for-

malism the mass, the radius, the angular momentum, the eccentricity and

quadrupole moment of rotating white dwarfs have been calculated as a func-

tion of both the central density and angular velocity of the star. The mass-

shedding limit, the inverse β-decay as well as the axisymmetric instabilities

are used to establish the minimum rotation period and the maximum mass of

uniformly rotating white dwarfs. These results are relevant both for the theory

of delayed type Ia supernovae explosions as well as for the white dwarf model

of Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars.

5. R. Negreiros, C. Bianco, Jorge A. Rueda, and Remo Ruffini, Cooling of
young neutron stars in GRB associated to SN, Astronomy & Astrophysics,
to appear.

The traditional study of neutron star cooling has been generally applied to

quite old objects as the Crab Pulsar (957 years) or the Central Compact Object

in Cassiopeia A (330 years) with an observed surface temperature ∼ 106 K.

However, recent observations of the late (t = 108–109 s) emission of Super-

novae associated to GRBs (GRB-SN) show a distinctive emission in the X-ray

regime consistent with temperatures ∼ 107–108 K. Similar features have been

also observed in two Type Ic Supernova SN 2002ap and SN 1994I not associ-

ated to GRBs. We advance the possibility that the late X-ray emission observed

in GRB-SN and in isolated SN is associated to a hot neutron star just formed

in the Supernova event, here defined as a neo-neutron star. We discuss the

thermal evolution of neo-neutron stars in the age regime that spans from ∼ 1

minute (just after the proto-neutron star phase) all the way up to ages < 10–100

yr. We examine critically the key factor governing the neo-neutron star cooling

with special emphasis on the neutrino emission by introducing a phenomeno-

logical heating source as well as new boundary conditions in order to mimic

the high temperature of the atmosphere for young neutron stars. We match the

neo-neutron star luminosity to the observed late X-ray emission of the GRB-SN

events: URCA-1 in GRB980425-SN1998bw, URCA-2 in GRB030329-SN2003dh,

and URCA-3 in GRB031203-SN2003lw, and identify the major role played by
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the neutrino emissivity in the thermal evolution of neo-neutron stars. By cal-

ibrating our additional heating source at early times to ∼ 1012–1015 erg/g/s,

we find a striking agreement of the luminosity obtained from the cooling of a

neo-neutron stars with the prolonged (t = 108–109 s) X-ray emission observed

in GRB associated with Supernova. It is therefore appropriate a revision of

the boundary conditions usually used in the thermal cooling theory of neutron

stars, in order to match the proper conditions of the atmosphere at young ages.

The traditional thermal processes taking place in the crust might be enhanced

by the extreme high temperature conditions of neo-neutron star. Additional

heating processes yet not studied within this context, e.g. e+e− pair creation

by overcritical fields and nuclear fusion and fission energy release, might also

take place under such conditions and deserve further analysis. The observa-

tion of GRB-SN has evidenced the possibility of witnessing the thermal evolu-

tion of neo-neutron stars. A new campaign of dedicated observations both of

GRB-SN and of isolated Type Ic SN is recommended.

6. K. Boshkayev, Jorge A. Rueda, and R. Ruffini, On the critical mass of uni-
formly rotating white dwarfs in general relativity, International Journal of
Modern Physics E, to appear.

The properties of uniformly rotating white dwarfs are analyzed within the

framework of general relativity. Hartle’s formalism is applied to construct self-

consistently the internal and external solutions to the Einstein equations. The

mass, the radius, the moment of inertia and quadrupole moment of rotating

white dwarfs have been calculated as a function of both the central density

and rotation period of the star. The maximum mass of rotating white dwarfs

for stable configurations has been obtained.

7. Jorge A. Rueda, and R. Ruffini, Towards a relativistic Thomas-Fermi theory
of white dwarfs and neutron stars, International Journal of Modern Physics
E, to appear.

We summarize recent progress in the formulation of a theory for white dwarfs

and neutron stars based on the general relativistic Thomas-Fermi equations of

equilibrium.

8. R. Belvedere, Jorge A. Rueda, and R. Ruffini, Mass, radius and moment
of inertia of neutron stars, International Journal of Modern Physics E, to
appear.

We construct the ground-state equilibrium configurations of neutron star cores.

The system of equilibrium equations, taking into account quantum statistics,

electro-weak, and strong interactions, is formulated within the framework of

general relativity both in the rotating and non-rotating spherically symmetric

case. The core is assumed to be composed of interacting degenerate neutrons,

protons and electrons in beta equilibrium. The strong interaction between nu-

cleons is mediated by the sigma-omega-rho virtual mesons. The mass-radius
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relation for neutron star cores is obtained for various parametrizations of the

nuclear model. The equilibrium conditions are given by our recently devel-

oped theoretical framework based on the Einstein-Maxwell-Thomas-Fermi equa-

tions along with the constancy of the general relativistic Fermi energies of par-

ticles, the “Klein potentials”, throughout the configuration. These equations

are here solved numerically in the case of zero temperatures and for selected

parameterizations of the nuclear model. We present here the new neutron star

mass-radius relation.

9. Jorge A. Rueda, R. Ruffini, and S.-S. Xue, The Klein first integrals in an
equilibrium system with electromagnetic, weak, strong and gravitational in-
teractions, Nuclear Physics A 872, 286 (2011).

The isothermal Tolman condition and the constancy of the Klein potentials

originally expressed for the sole gravitational interaction in a single fluid are

here generalized to the case of a three quantum fermion fluid duly taking into

account the strong, electromagnetic, weak and gravitational interactions. The

set of constitutive equations including the Einstein-Maxwell-Thomas-Fermi

equations as well as the ones corresponding to the strong interaction descrip-

tion are here presented in the most general relativistic isothermal case. This

treatment represents an essential step to correctly formulate a self-consistent

relativistic field theoretical approach of neutron stars.

10. M. Rotondo, Jorge A. Rueda, R. Ruffini, and S.-S. Xue, The self-consistent
general relativistic solution for a system of degenerate neutrons, protons and
electrons in β-equilibrium, Physics Letters B 701, 667–671 (2011).

We present the self-consistent treatment of the simplest, nontrivial, self-gravitating

system of degenerate neutrons, protons and electrons in β-equilibrium within

relativistic quantum statistics and the Einstein-Maxwell equations. The impos-

sibility of imposing the condition of local charge neutrality on such systems is

proved, consequently overcoming the traditional Tolman-Oppenheimer-Volkoff

treatment. We emphasize the crucial role of imposing the constancy of the

generalized Fermi energies. A new approach based on the coupled system

of the general relativistic Thomas-Fermi-Einstein-Maxwell equations is pre-

sented and solved. We obtain an explicit solution fulfilling global and not local

charge neutrality by solving a sophisticated eigenvalue problem of the general

relativistic Thomas-Fermi equation. The value of the Coulomb potential at the

center of the configuration is eV(0) ∼ mπc2 and the system is intrinsically

stable against Coulomb repulsion in the proton component. This approach is

necessary, but not sufficient, when strong interactions are introduced.

11. M. Rotondo, Jorge A. Rueda, R. Ruffini, and S.-S. Xue, Relativistic Feynman-
Metropolis-Teller theory for white dwarfs in general relativity, Physical Re-
view D 84, 084007 (2011).
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The recent formulation of the relativistic Thomas-Fermi model within the Feynman-

Metropolis-Teller theory for compressed atoms is applied to the study of gen-

eral relativistic white dwarf equilibrium configurations. The equation of state,

which takes into account the β-equilibrium, the nuclear and the Coulomb in-

teractions between the nuclei and the surrounding electrons, is obtained as a

function of the compression by considering each atom constrained in a Wigner-

Seitz cell. The contribution of quantum statistics, weak, nuclear, and electro-

magnetic interactions is obtained by the determination of the chemical po-

tential of the Wigner-Seitz cell. The further contribution of the general rela-

tivistic equilibrium of white dwarf matter is expressed by the simple formula√
g00µws = constant, which links the chemical potential of the Wigner-Seitz

cell µws with the general relativistic gravitational potential g00 at each point of

the configuration. The configuration outside each Wigner-Seitz cell is strictly

neutral and therefore no global electric field is necessary to warranty the equi-

librium of the white dwarf. These equations modify the ones used by Chan-

drasekhar by taking into due account the Coulomb interaction between the nu-

clei and the electrons as well as inverse β-decay. They also generalize the work

of Salpeter by considering a unified self-consistent approach to the Coulomb

interaction in each Wigner-Seitz cell. The consequences on the numerical value

of the Chandrasekhar-Landau mass limit as well as on the mass-radius rela-

tion of 4He, 12C, 16O and 56Fe white dwarfs are presented. All these effects

should be taken into account in processes requiring a precision knowledge of

the white dwarf parameters.

12. M. Rotondo, Jorge A. Rueda, R. Ruffini, and S.-S. Xue, Relativistic Thomas-
Fermi treatment of compressed atoms and compressed nuclear matter cores of
stellar dimensions, Physical Review C 83, 045805 (2011).

The Feynman, Metropolis and Teller treatment of compressed atoms is ex-

tended to the relativistic regimes. Each atomic configuration is confined by

a Wigner-Seitz cell and is characterized by a positive electron Fermi energy.

The non-relativistic treatment assumes a point-like nucleus and infinite val-

ues of the electron Fermi energy can be attained. In the relativistic treatment

there exists a limiting configuration, reached when the Wigner-Seitz cell radius

equals the radius of the nucleus, with a maximum value of the electron Fermi

energy (EF
e )max, here expressed analytically in the ultra-relativistic approxima-

tion. The corrections given by the relativistic Thomas-Fermi-Dirac exchange

term are also evaluated and shown to be generally small and negligible in

the relativistic high density regime. The dependence of the relativistic elec-

tron Fermi energies by compression for selected nuclei are compared and con-

trasted to the non-relativistic ones and to the ones obtained in the uniform ap-

proximation. The relativistic Feynman, Metropolis, Teller approach here pre-

sented overcomes some difficulties in the Salpeter approximation generally

adopted for compressed matter in physics and astrophysics. The treatment

is then extrapolated to compressed nuclear matter cores of stellar dimensions
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with A ≃ (mPlanck/mn)3 ∼ 1057 or Mcore ∼ M⊙. A new family of equilibrium

configurations exists for selected values of the electron Fermi energy varying

in the range 0 < EF
e ≤ (EF

e )max. Such configurations fulfill global but not local

charge neutrality. They have electric fields on the core surface, increasing for

decreasing values of the electron Fermi energy reaching values much larger

than the critical value Ec = m2
e c3/(eh̄), for EF

e = 0. We compare and contrast

our results with the ones of Thomas-Fermi model in strange stars.

13. Jorge A. Rueda, M. Rotondo, R. Ruffini, and S.-S. Xue, On Compressed
Nuclear Matter:. from Nuclei to Neutron Stars, International Journal of
Modern Physics D 20, 1789–1796 (2011).

We address the description of neutron-proton-electron degenerate matter in

beta equilibrium subjected to compression both in the case of confined nucle-

ons into a nucleus as well as in the case of deconfined nucleons. We follow a

step-by-step generalization of the classical Thomas-Fermi model to special and

general relativistic regimes, which leads to a unified treatment of beta equi-

librated neutron-proton-electron degenerate matter applicable from the case

of nuclei all the way up to the case of white-dwarfs and neutron stars. New

gravito-electrodynamical effects, missed in the traditional approach for the de-

scription of neutron star configurations, are found as a consequence of the new

set of general relativistic equilibrium equations.

14. M. Rotondo, R. Ruffini, S.-S. Xue, and V. Popov, On Gravitationally and
Electrodynamically Bound Nuclear Matter Cores of Stellar Dimensions, In-
ternational Journal of Modern Physics D 20, 1995–2002 (2011).

In a unified treatment we extrapolate results for neutral atoms with heavy nu-

clei to nuclear matter cores of stellar dimensions with mass numbers A ≈
(mPlanck/mn)3 ∼ 1057. We give explicit analytic solutions for the relativistic

Thomas-Fermi equation of Nn neutrons, Np protons and Ne electrons in beta

equilibrium, fulfilling global charge neutrality, with Np = Ne. We give explicit

expressions for the physical parameters including the Coulomb and the sur-

face energies and we study as well the stability of such configurations. Anal-

ogous to heavy nuclei these macroscopic cores exhibit an overcritical electric

field near their surface.

15. R. Ruffini and S.-S. Xue, Electron-positron pairs production in a macroscopic
charged core, Physics Letters B 696, 416–421 (2011).

Classical and semi-classical energy states of relativistic electrons bounded by a

massive and charged core with the charge-mass radio Q/M and macroscopic

radius Rc are discussed. We show that the energies of semi-classical (bound)

states can be much smaller than the negative electron mass-energy (−mc2),

and energy-level crossing to negative energy continuum occurs. Electron-

positron pair production takes place by quantum tunneling, if these bound

states are not occupied. Electrons fill into these bound states and positrons go
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to infinity. We explicitly calculate the rate of pair-production, and compare it

with the rates of electron-positron production by the Sauter-Euler-Heisenberg-

Schwinger in a constant electric field. In addition, the pair-production rate for

the electro-gravitational balance ratio Q/M = 10−19 is much larger than the

pair-production rate due to the Hawking processes.

16. Jorge A. Rueda, M. Rotondo, R. Ruffini, and S.-S. Xue, A self-consistent
approach to neutron stars, Journal of the Korean Physical Society 57, 560
(2010).

We present a set of equilibrium equations for a self-gravitating system of de-

generate neutrons, protons and electrons in beta equilibrium in the framework

of relativistic quantum statistics and the Einstein-Maxwell equations. Special

emphasis is given to the crucial role of the constancy of the generalized Fermi

energy of particles, from which we formulate the general relativistic version

of the Thomas-Fermi equation. We discuss briefly the consequences of this

approach in the general case of neutron star configurations with a core and a

crust.

5.2. Conference Proceedings

1. Jorge A. Rueda, M. Rotondo, R. Ruffini, and S.-S. Xue, On the relativis-
tic Feynman-Metropolis-Teller equation of state and general relativistic white-
dwarfs, Proceedings of Science, PoS(Texas2010), 269 (2011).

The recently formulation of the relativistic Thomas-Fermi model for compressed

atoms is applied to the study of white-dwarf equilibrium configurations in the

framework of general relativity. The equation of state is obtained as a function

of the compression by considering each atom constrained in a Wigner-Seitz cell

and it takes into account the β-equilibrium and the Coulomb interaction be-

tween the nuclei and the surrounding electrons. The consequences on the nu-

merical value of the Chandrasekhar-Landau mass limit are presented as well

as the modifications to the mass-radius relation for 4He and 56Fe white-dwarf

equilibrium configurations.

2. D. Pugliese, Jorge A. Rueda, R. Ruffini, and S.-S. Xue, A general relativis-
tic Thomas-Fermi treatment of neutron star cores, Proceedings of Science,
PoS(Texas 2010), 271 (2011).

We formulate the set of selfconsistent groundstate equilibrium equations for

neutron star cores taking into account quantum statistics, electroweak, and

strong interactions, within the framework of general relativity. The strong in-

teraction between nucleons is modeled through the sigma omegarho meson

exchange in the context of the extended Walecka model, all duly expressed in

general relativity. We found the generalization to the works of Klein (1949), of

Kodama and Yamada (1972), and of Olson and Baylin (1975) by demonstrating
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that the thermodynamic equilibrium condition of the constancy of the Fermi

energy of each particlespecie can be properly generalized to include the contri-

bution of all fields. The consequences of these new conditions of equilibrium

on the structure of neutron stars are discussed.

3. R. Belvedere, On the structure of the crust of neutron stars, Proceedings of
Science, PoS(Texas 2010), 270 (2011).

We calculate the mass and the thickness of neutron star crusts correspond-

ing for different neutron star core mass-radius relations. The system of equi-

librium equations, taking into account quantum statistics, electro-weak, and

strong interactions, is formulated within the framework of general relativity in

the non-rotating spherically symmetric case. The core is assumed to be com-

posed of interacting degenerate neutrons, protons and electrons in beta equi-

librium. The strong interaction between nucleons is modeled through sigma-

omega-rho meson exchange in the context of the extended Walecka model.

4. K. Boshkayev, On the Stability of Rotating Nuclear Matter Cores of Stellar
Dimensions, Proceedings of Science, PoS(Texas 2010), 275 (2011).

A globally neutral system of stellar dimensions consisting of degenerate neu-

trons, protons and electrons in beta equilibrium is considered using the ultra-

relativistic solution of the Thomas- Fermi equation. Such a system at nuclear

density having mass numbers A ≈ 1057 can exhibit a charge distribution dif-

ferent from zero. The analysis to investigate the magnetic field induced by the

rotation of the system as a whole rigid body and its stability is presented in the

framework of classical electrodynamics.

5. K. Boshkayev, Jorge A. Rueda, and R. Ruffini, On the minimum rotational
period of fast rotating white dwarfs, Proceedings of Les Houches workshop
“From Nuclei to White Dwarfs to Neutron Stars”, Eds. A. Mezzacappa,
World Scientific (2011).

The properties of rotating white dwarfs are calculated within the framework of

general relativity. Hartle’s formalism is applied to construct self-consistently

the internal and the external solution to the Einstein equations. Within this

formalism we calculate the mass, the radius, the moment of inertia, the eccen-

tricity and quadrupole moment of rotating white dwarfs as a function both of

the central density and the rotational period of the star. The minimum rota-

tional period (maximum angular velocity) for stable configurations has been

obtained as well as the contribution of rotation to the maximum mass of white

dwarfs.

6. K. Boshkayev, M. Rotondo, and R. Ruffini, On Nuclear Matter Cores and
Their Applications, Astronomical Society of the Pacific Conference Series,
to appear.
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We review a recent series of articles considering electromagnetic effects in self-

gravitating systems of nuclear matter. The results find their explicit application

within the theory of neutron stars.

7. D. Bini, K. Boshkayev, R. Ruffini, and I. Siutsou, Equatorial and circular
geodesics in the Hartle-Thorne space-time, Nuovo Cimento C, to appear.

The Hartle-Thorne metric is an approximate solution of vacuum Einstein field

equations that describes the exterior region of any slowly and rigidly rotating,

stationary and axially symmetric body. The metric is given with accuracy up

to the second order terms in the body’s angular momentum, and first order in

its quadrupole moment. We investigate equatorial and circular geodesics and

give, with the same accuracy, analytic formulae for circular geodesics in the

Hartle-Thorne metrics.

8. Jorge A. Rueda, M. Rotondo, R. Ruffini, and S.-S. Xue, A New Family of
Neutron Star Models: Global Neutrality vs. Local Neutrality, Proceedings
of the Twelfth Marcel Grossmann Meeting on General Relativity, Eds.
Thibault Damour, Robert T Jantzen and Remo Ruffini, World Scientific,
Singapore (2011).

We formulate the set of self-consistent ground-state equilibrium equations of a

system of degenerate neutrons, protons and electrons in beta equilibrium tak-

ing into account quantum statistics and electro-weak interactions within the

framework of general relativity. We point out the existence of globally neu-

tral neutron star configurations in contrast with the traditional locally neutral

ones. We discuss new gravito-electrodynamic effects present in such globally

neutral neutron star equilibrium configurations.

9. D. Pugliese, Jorge A. Rueda, R. Ruffini, and S.-S. Xue, A general rela-
tivistic Thomas Fermi treatment of neutron star cores II. Generalized Fermi
energies and β-equilibrium, Proceedings of the 2nd Galileo-Xu Guangqi
Meeting, Ventimiglia-Italy (2010).

We formulate the set of self-consistent ground-state equilibrium equations of

a system of degenerate neutrons, protons and electrons in beta equilibrium

taking into account quantum statistics, electro-weak, and strong interactions,

within the framework of general relativity. The strong interaction between nu-

cleons is modeled through sigma-omega-rho meson exchange in the context

of the extended Walecka model, all duly expressed in general relativity. We

demonstrate that, as in the non-interacting case, the thermodynamic equilib-

rium condition given by the constancy of the Fermi energy of each particle-

specie can be properly generalized to include the contribution of all fields.

10. K. Boshkayev, M. Rotondo, and R. Ruffini, On Magnetic Fields in Rotat-
ing Nuclear Matter Cores of Stellar Dimensions, Proceedings of the 2nd
Galileo-Xu Guangqi Meeting, Ventimiglia-Italy (2010).
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We consider a globally neutral system of a stellar dimension consisting of de-

generate and mostly non-interacting Nn neutrons, Np protons and Ne electrons

in beta equilibrium. Such a system at nuclear density having mass numbers

A ≈ 1057 can exhibit a charge distribution different from zero. We present the

analysis in the framework of classical electrodynamics to investigate the mag-

netic field induced by this charge distribution when the system is allowed to

rotate as a whole rigid body with constant angular velocity around the axis of

symmetry.

11. R. Mohammadi, Jorge A. Rueda, R. Ruffini, and S.-S. Xue, The solution
of the Thomas-Fermi equation in the presence of strong magnetic fields, Con-
tribution to the Proceedings of the 2nd Galileo-Xu Guangqi Meeting,
Ventimiglia-Italy (2010).

We study the influence of strong constant magnetic fields on a globally but

not locally neutral compressed system of degenerate neutrons, protons and

electrons in beta equilibrium. The ultrarelativistic Thomas-Fermi equation for

such a compressed magnetized system is obtained and solved analytic closed

form. We analyze the effects of the magnetic field on the properties of the

configuration such as the Coulomb potential, the electric field, and the proton

fraction.

12. Jorge A. Rueda, R. Ruffini, and S.-S. Xue, On the electrostatic structure of
neutron stars, AIP Conference Proceedings 1205, 143–147 (2010).

We consider neutron stars composed by, (1) a core of degenerate neutrons,

protons, and electrons above nuclear density; (2) an inner crust of nuclei in

a gas of neutrons and electrons; and (3) an outer crust of nuclei in a gas of

electrons. We use for the strong interaction model for the baryonic matter in

the core an equation of state based on the phenomenological Weizsacker mass

formula, and to determine the properties of the inner and the outer crust below

nuclear saturation density we adopt the well-known equation of state of Baym-

Bethe-Pethick. The integration of the Einstein-Maxwell equations is carried

out under the constraints of β-equilibrium and global charge neutrality. We

obtain baryon densities that sharply go to zero at nuclear density and electron

densities matching smoothly the electron component of the crust. We show

that a family of equilibrium configurations exists fulfilling overall neutrality

and characterized by a non-trivial electrodynamical structure at the interface

between the core and the crust. We find that the electric field is overcritical and

that the thickness of the transition surface-shell separating core and crust is of

the order of the electron Compton wavelength.
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A. Nuclear and Atomic
Astrophysics

A.1. On gravitationally and electrodynamically

bound massive nuclear density cores

A.1.1. Introduction

Models involving e+e− plasmas of total energy ≤ 1055 ergs originating from
a vacuum polarization process during the formation of a black hole are being
studied to explain a variety of ultra-relativistic astrophysics events (Ruffini
et al., 2010b; Cherubini et al., 2009; Aksenov et al., 2007). The formation of
such a Kerr-Newman black hole with overcritical electromagnetic fields can
only occur during the process of gravitational collapse, e.g., of two coalescing
neutron stars. Accordingly in this article we consider new electrodynamical
properties of massive nuclear density cores which have been neglected in the
astrophysics literature. This issue has been overlooked in the traditional de-
scription of neutron stars by considering only neutrons (Oppenheimer and
Volkoff, 1939) or by imposing ab initio local charge neutrality, i.e., local iden-
tity of the densities of protons and electrons np = ne, thus bypassing the de-
scription of any possible electrodynamical effect (Harrison et al., 1965; Baym
et al., 1971a).

The model we consider here generalizes the relativistic Thomas-Fermi treat-
ment for neutral atoms with heavy nuclei (Pieper and Greiner, 1969; Müller
et al., 1972; Greenberg and Greiner, 1982; Popov, 1971b; Zeldovich and Popov,
1972; Migdal et al., 1976). The study of neutral atoms with nuclei of mass
number A ∼ 102–106 is a classic problem of theoretical physics (Zeldovich
and Popov, 1972; Ruffini et al., 2010b). Special attention has been given to a
possible vacuum polarization process and the creation of e+e− pairs (Pieper
and Greiner, 1969; Zeldovich and Popov, 1972; Ruffini et al., 2010b) as well as
to the study of nuclear stability against Coulomb repulsion (Greenberg and
Greiner, 1982). The existence of electric fields larger than the critical value
Ec = m2

e c3/(eh̄) near their surfaces (Popov, 1971b) has also been shown. We
have generalized these models by enforcing the beta equilibrium conditions
(Ruffini et al., 2007c).

We have then extrapolated those results by numerical integration to the
case of massive nuclear density cores of mass ≈ 1M⊙ and radius Rc ≈ 10 km
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(Ruffini et al., 2007c). Such a massive nuclear density core is a globally neu-
tral system of Nn neutrons, Np protons and Ne electrons in beta equilibrium

at nuclear density having mass numbers A ∼ (mPlanck/mn)
3 where mn (me)

is the neutron (electron) mass and mPlanck = (h̄c/G)1/2 (Ruffini et al., 2007c).
As in the nuclear model (Migdal et al., 1976), the proton distribution is here
assumed to be constant up to the core radius Rc. We have obtained configu-
rations with global charge neutrality Np = Ne but np 6= ne, in contrast with
the local condition np = ne traditionally assumed in astrophysics. As a result
electric fields of critical value are confirmed to exist, near the surface, also
in the case of massive nuclear density cores in analogy to the case of heavy
nuclei.

Recently a new dimensionless form of the relativistic Thomas-Fermi treat-
ment for a nuclear density core has been obtained which reveals the existence
of new scaling laws for this model.

In this article we present a unified treatment extending from heavy nuclei
to massive nuclear density cores by using an explicit analytic solitonic solu-
tion of the new dimensionless form of the relativistic Thomas-Fermi equation.
We confirm the existence of and give an analytic expression for the overcriti-
cal electric field near the surface of massive nuclear density cores already ob-
tained in (Ruffini et al., 2007c) by numerical integration. Furthermore there
are a variety of new results made possible by the new analytic formulation.
First we give an explicit expression for the Coulomb energy of such cores,
demonstrating their stability against nuclear fission, as opposed to the case
of heavy nuclei. Secondly on the basis of Newtonian gravitational energy
considerations we propose the existence of a possible new island of stabil-

ity for mass numbers A > AR = 0.039
(

Np

A

)1/2 (mPlanck
mn

)3
. The equilibrium

against Coulomb repulsion originates now from the combined effect of the
screening of the relativistic electrons, of the surface tension due to strong in-
teractions and of the gravitational interaction of the massive dense cores. By
enforcing the condition of beta equilibrium, we also obtain a generalized rela-
tion between the mass number A and atomic number Np which encompasses
previous phenomenological expressions.

All the above solutions have been obtained assuming the electron Fermi
energy to be equal to zero. The necessity and the methodology of extending
these results to the case of compressed atoms along the lines of the Feynman-
Metropolis-Teller treatment (Feynman et al., 1949), corresponding to positive
values of the Fermi energy of electrons, are outlined here. We also motivate
the clear necessity and the general methodology of justifying the above re-
sults using a self-consistent general relativistic treatment of the system. These
ideas will be pursued in detail elsewhere.
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density cores

A.1.2. The relativistic Thomas-Fermi equation and the beta

equilibrium condition

It has been known since the classic work of Fermi (Fermi, 1950) that the phe-
nomenological drop model of the nucleus gives excellent results for a variety
of properties including the isobaric behavior and nuclear fission. In addition
to the masses of the baryonic components and the asymmetry energy and
pairing term, the mass formula contains terms estimating the surface tension
energy of the nucleus (Fermi, 1950)

Es = 17.5 · A2/3 MeV, (A.1.1)

and the Coulomb energy (Fermi, 1950)

Ec =
3αN2

p

5Rc
, (A.1.2)

where Rc = r0A1/3, r0 = 1.5 · 10−13 cm and the numerical factors are derived
by fitting the observational data. From the extremization of the mass formula
the following relation between A and Np is obtained (Fermi, 1950)

Np ≃
[

2

A
+

3

200

1

A1/3

]−1

, (A.1.3)

which in the limit of small A gives

Np ≃ A

2
. (A.1.4)

The analysis of the stability of the nucleus against finite deformation leads to
a stability condition against fission given by the equality of the surface energy
term to the Coulomb energy. This leads to the condition (Fermi, 1950)

N2
p

A
< 45. (A.1.5)

A novel situation occurs when super-heavy nuclei (A > Ã ∼ 104) are
examined (Ferreirinho et al., 1980; Ruffini et al., 2007c). The distribution of
electrons penetrates inside the nucleus: a much smaller effective net charge
of the nucleus occurs due to the screening of relativistic electrons (Migdal
et al., 1976; Ferreirinho et al., 1980). In Ruffini and Stella (1981) a definition
of an effective nuclear charge due to the penetration of the electrons was pre-
sented. A treatment based on the relativistic Thomas-Fermi model has been
developed in order to describe the penetration of the electrons and their ef-
fective screening of the positive nuclear charge. In particular, by assuming
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Np ≃ A/2, Pieper and Greiner (1969); Müller et al. (1972); Greenberg and
Greiner (1982) and Popov (1971b); Zeldovich and Popov (1972); Migdal et al.
(1976) in a series of papers were able to solve the non-linear Thomas-Fermi
equation. It was demonstrated in Migdal et al. (1976) that the effective pos-
itive nuclear charge is confined to a small layer of thickness ∼ h̄/

√
αmπc

where mπ is the pion mass and as usual α = e2/h̄c. Correspondingly electric
fields of strength much larger than the critical value Ec for vacuum polariza-
tion at the surface of the core are created. However, the creation of electron-
positron pairs due to the vacuum polarization process does not occur because
of the Pauli blocking by the degenerate electrons Ruffini et al. (2010b).

Here we generalize the work of Pieper and Greiner (1969); Müller et al.
(1972); Greenberg and Greiner (1982) and Popov (1971b); Zeldovich and Popov
(1972); Migdal et al. (1976). We have relaxed the condition Np ≃ A/2 adopted

by Popov and Greiner as well as the condition Np ≃
[

2/A + 3/200A1/3
]−1

adopted by Ferreirinho et al. (1980). Instead we explicitly impose the beta
decay equilibrium between neutrons, protons and electrons. We then extrap-
olate such model to the case A ≈ (mPlanck/mn)3 ∼ 1057. A supercritical
field still exists in a shell of thickness ∼ h̄/

√
αmπc at the core surface, and

a charged lepton-baryonic core is surrounded by an oppositely charged lep-
tonic component. Such massive nuclear density cores, including the leptonic
component, are globally neutral.

As usual we assume that the protons are distributed at constant density np

within a radius

Rc = ∆
h̄

mπc
N1/3

p , (A.1.6)

where ∆ is a parameter such that ∆ ≈ 1 (∆ < 1) corresponds to nuclear
(supranuclear) densities when applied to ordinary nuclei. The overall Cou-
lomb potential satisfies the Poisson equation

∇2V(r) = −4πe
[

np(r)− ne(r)
]

, (A.1.7)

with the boundary conditions V(∞) = 0 (due to the global charge neutrality
of the system) and finiteness of V(0). The density ne(r) of the electrons of
charge −e is determined by the Fermi energy condition on their Fermi mo-
mentum PF

e ; we assume here

EF
e = [(PF

e c)2 + m2
e c4]1/2 − mec

2 − eV(r) = 0 , (A.1.8)

which leads to

ne(r) =
(PF

e )
3

3π2h̄3
=

1

3π2h̄3c3

[

e2V2(r) + 2mec
2eV(r)

]3/2
.

(A.1.9)
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By introducing x = r/[h̄/mπc], xc = Rc/[h̄/mπc] and χ/r = eV(r)/ch̄, the
relativistic Thomas-Fermi equation takes the form

1

3x

d2χ(x)

dx2
= − α

∆3
θ(xc − x) +

4α

9π

[

χ2(x)

x2
+ 2

me

mπ

χ

x

]3/2

,

(A.1.10)

where χ(0) = 0, χ(∞) = 0. The neutron density nn(r) is determined by the
Fermi energy condition on their Fermi momentum PF

n imposed by beta decay
equilibrium

EF
n = [(PF

n c)2 + m2
nc4]1/2 − mnc2

= [(PF
p c)2 + m2

pc4]1/2 − mpc2 + eV(r), (A.1.11)

which in turn is related to the proton and electron densities by Eqs. (A.1.7),
(A.1.9) and (A.1.10). These equations have been integrated numerically (see
Ruffini et al. (2007c)).

A.1.3. The ultra-relativistic analytic solutions

In the ultrarelativistic limit, the relativistic Thomas-Fermi equation admits an

analytic solution. Introducing the new function φ defined by φ = 41/3

(9π)1/3 ∆
χ
x

and the new variables x̂ = (12/π)1/6 √α∆−1x, ξ = x̂ − x̂c, where x̂c =

(12/π)1/6 √α∆−1xc, then Eq. (A.1.10) becomes

d2φ̂(ξ)

dξ2
= −θ(−ξ) + φ̂(ξ)3 , (A.1.12)

where φ̂(ξ) = φ(ξ + x̂c). The boundary conditions on φ̂ are: φ̂(ξ) → 1 as
ξ → −x̂c ≪ 0 (at the massive nuclear density core center) and φ̂(ξ) → 0 as
ξ → ∞. The function φ̂ and its first derivative φ̂′ must be continuous at the
surface ξ = 0 of the massive nuclear density core. Equation (A.1.12) admits
an exact solution

φ̂(ξ) =











1 − 3
[

1 + 2−1/2 sinh(a −
√

3ξ)
]−1

, ξ < 0,√
2

(ξ + b)
, ξ > 0 ,

(A.1.13)

where the integration constants a and b have the values a = arcsinh(11
√

2) ≈
3.439, b = (4/3)

√
2 ≈ 1.886. Next we evaluate the Coulomb potential energy
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function

eV(ξ) =

(

9π

4

)1/3 1

∆
mπc2φ̂(ξ) , (A.1.14)

and by differentiation, the electric field

E(ξ) = −
(

35π

4

)1/6 √
α

∆2

m2
πc3

eh̄
φ̂′(ξ) . (A.1.15)

Details are given in Figs. A.1 and A.2.
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Figure A.1.: The electron Coulomb potential energy −eV, in units of pion
mass mπ is plotted as a function of the radial coordinate ξ = x̂ − x̂c, for
selected values of the density parameter ∆.

We now estimate three crucial quantities:
1) the Coulomb potential at the center of the configuration,

eV(0) ≈
(

9π

4

)1/3 1

∆
mπc2 , (A.1.16)
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Figure A.2.: The electric field is plotted in units of the critical field Ec as a
function of the radial coordinate ξ for ∆=2, showing a sharp peak at the core
radius.
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Figure A.3.: The A-Np relation at nuclear density (solid line) obtained from
first principles compared with the phenomenological expressions given by
Np ≃ A/2 (dashed line) and Eq. (A.1.3) (dotted line). The asymptotic value,

for A → (mPlanck/mn)3, is Np ≈ 0.0046A).
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2) the electric field at the surface of the core

Emax ≈ 0.95
√

α
1

∆2

m2
πc3

eh̄
= 0.95

√
α

∆2

(

mπ

me

)2

Ec . (A.1.17)

3) the Coulomb electrostatic energy of the core

Eem =
∫

E2

8π
d3r ≈ 0.15

3h̄c(3π)1/2

4∆
√

α
A2/3 mπc

h̄

(

Np

A

)2/3

. (A.1.18)

These three quantities are functions only of the pion mass mπ, the density
parameter ∆ and of the fine structure constant α. Their formulas apply over
the entire range from superheavy nuclei with Np ∼ 103 all the way up to

massive cores with Np ≈ (mPlanck/mn)3.

A.1.4. New results derived from the analytic solutions

Starting from the analytic solutions of the previous section we obtain the fol-
lowing new results.

a) Using the solution (A.1.13), we have obtained a new generalized relation
between A and Np for any value of A. In the limit of small A this result agrees
well with the phenomenological relations given by Eqs. (A.1.3) and (A.1.4), as
is clearly shown in Fig. A.3. It appears that the explicit evaluation of the beta
equilibrium, in contrast with the previously adopted Eqs.(3,4), leads to an
effect comparable in magnitude and qualitatively similar to the asymmetry
energy in the phenomenological liquid drop model.

b) The charge-to-mass ratio of the effective charge Q at the core surface to
the core mass M is given by

Q√
GM

≈ EmaxR2
c√

GmnA
≈ mPlanck

mn

(

1

Np

)1/3 Np

A
. (A.1.19)

For superheavy nuclei with Np ≈ 103 , the charge-to-mass ratio for the
nucleus is

Q√
GM

>
1

20

mPlanck

mn
∼ 1018. (A.1.20)

Gravitation obviously plays no role in the stabilization of these nuclei.
Instead for massive nuclear density cores where Np ≈ (mPlanck/mn)3, the

ratio Q/
√

GM given by Eq. (A.1.19) is simply

Q√
GM

≈ Np

A
, (A.1.21)
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which is approximatively 0.0046 (see Fig. A.3). It is well-known that the
charge-to-mass-ratio (A.1.21) smaller than 1 evidences the equilibrium of self-
gravitating mass-charge system both in Newtonian gravity and general rela-
tivity (see, e.g., Chandrasekhar (1992)).

c) For a massive core at nuclear density the criterion of stability against
fission (Eem < 2Es) is satisfied. In order to see this we use Eqs. (A.1.1) and (
A.1.18)

Eem

2Es
≈ 0.15

3

8

√

3π

α

1

∆

(

Np

A

)2/3 mπc2

17.5MeV
∼ 0.1 < 1. (A.1.22)

A.1.5. Estimates of gravitational effects in a Newtonian

approximation

In order to investigate the possible effects of gravitation on these massive
neutron density cores we proceed to some qualitative and quantitative esti-
mates based on the Newtonian approximation.

a) The maximum Coulomb energy per proton is given by Eq. (A.1.16) where
the potential is evaluated at the center of the core. The Newtonian gravi-
tational potential energy per proton (of mass mp) in the field of a massive

nuclear density core with A ≈ (mPlanck/mn)3 is given by

Eg = −G
Mmp

Rc
= − 1

∆

mPlanck

mn

mπc2

N1/3
p

≃ −mπc2

∆

(

A

Np

)1/3

.

(A.1.23)

Since A/Np ∼ 0.0046 (see Fig. A.3 ) for any value of ∆, the gravitational en-
ergy is larger in magnitude than and opposite in sign to the Coulomb poten-
tial energy per proton of Eq. (A.1.16) so the system should be gravitationally
stable.

b) There is yet a more accurate derivation of the gravitational stability
based on the analytic solution of the Thomas-Fermi equation Eq. (A.1.12).
The Coulomb energy Eem given by (A.1.18) is mainly distributed within a thin
shell of width δRc ≈ h̄∆/(

√
αmπc) and proton number δNp = np4πR2

c δRc at
the surface. To ensure the stability of the system, the attractive gravitational
energy of the thin proton shell

Egr ≈ −3
G

∆

A4/3

√
α

(

Np

A

)1/3

m2
n

mπc

h̄
(A.1.24)

1332



A.1. On gravitationally and electrodynamically bound massive nuclear
density cores

must be larger than the repulsive Coulomb energy (A.1.18). For small A, the
gravitational energy is always negligible. However, since the gravitational
energy increases proportionally to A4/3 while the Coulomb energy only in-
creases proportionally to A2/3, the two must eventually cross, which occurs
at

AR = 0.039

(

Np

A

)1/2 (mPlanck

mn

)3

. (A.1.25)

This establishes a lower limit for the mass number AR necessary for the ex-
istence of an island of stability for massive nuclear density cores. The upper
limit of the island of stability will be determined by general relativistic effects.

c) Having established the role of gravity in stabilizing the Coulomb inter-
action of the massive nuclear density core, we outline the importance of the
strong interactions in determining its surface. We find for the neutron pres-
sure at the surface:

Pn =
9

40

(

3

2π

)1/3 (mπ

mn

)

mπc2

(h̄/mπc)3

(

A

Np

)5/3 1

∆5
,

(A.1.26)

and for the surface tension, as extrapolated from nuclear scattering experi-
ments,

Ps = −
(

0.13

4π

)

mπc2

(h̄/mπc)3

(

A

Np

)2/3 1

∆2
. (A.1.27)

We then obtain

|Ps|
Pn

= 0.39 · ∆3

(

Np

A

)

= 0.24 · ρnucl

ρsurf
, (A.1.28)

where ρnucl = 3mnA/4πR3
c . The relative importance of the nuclear pressure

and nuclear tension is a very sensitive function of the density ρsurf at the
surface.

It is important to emphasize a major difference between nuclei and the
massive nuclear density cores treated in this article: the gravitational binding
energy in these massive nuclear density cores is instead Egr ≈ GM⊙mn/Rc ≈
0.1mnc2 ≈ 93.8 MeV. In other words it is much bigger than the nuclear energy

in ordinary nuclei Enuclear ≈ h̄2/mnr2
0 ≈ 28.8 MeV.

A.1.6. Possible applications to neutron stars

All the above considerations have been made for an isolated massive core at
constant density whose boundary has been sharply defined by a step func-
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tion. No external forces are exerted. Consequently due to the global charge
neutrality, the Fermi energy of the electrons has been assumed to be equal to
zero. In the earliest description of neutron stars in the work of Oppenheimer
and Volkoff (1939) only a gas of neutrons was considered and the equation
of equilibrium was written in the Schwarzchild metric. They considered the
model of a degenerate gas of neutrons to hold from the center to the border,
with the density monotonically decreasing away from the center.

In the intervening years a more realistic model has been presented chal-
lenging the original considerations of Tolman (1939); Oppenheimer and Volkoff
(1939). Their TOV equations considered the existence of neutrons all the way
to the surface of the star. The presence of neutrons, protons and electrons in
beta equilibrium were instead introduced in Harrison et al. (1965). Still more
important the neutron stars have been shown to be composed of two sharply
different components: the core at nuclear and/or supra-nuclear density con-
sisting of neutrons, protons and electrons and a crust of white dwarf like
material, namely of degenerate electrons in a nuclei lattice (Harrison et al.,
1965; Baym et al., 1971a). The pressure and the density of the core are mainly
due to the baryons while the pressure of the crust is mainly due to the elec-
trons with the density due to the nuclei and possibly with some free neutrons
due to neutron drip (see e.g. Baym et al. (1971a)). Further works describ-
ing the nuclear interactions where later introduced (see e.g. Haensel et al.
(2007)). Clearly all these considerations departed profoundly from the TOV
approximation. The matching between the core component and the crust is
the major unsolved problem. To this issue this article introduce some prelimi-
nary results in a simplified model which has the advantage to present explicit
analytic solutions.

In all the above treatments in order to close the system of equations the con-
dition of local charge neutrality ne = np was adopted without a proof. The
considerations of massive neutron density cores presented in this article offer
an alternative to the local charge neutrality condition ne = np. In a specific
example which can be solved also analytically such condition is substituted
by the Thomas-Fermi relativistic equations implying ne 6= np and an overall
charge neutral system (Ne = Np). The condition of global charge neutrality
as opposed to the local one, leads to the existence of overcritical electric fields
at the core surface which may be relevant in the description of neutron stars.

A.1.7. Conclusions

We have first generalized the treatment of heavy nuclei by enforcing the con-
dition of beta equilibrium in the relativistic Thomas-Fermi equation, avoid-
ing the imposition of Np ≃ A/2 between Np and A traditionally assumed
in the literature. In doing so we have obtained (see Fig. A.3) an A − Np re-
lation which extends the ones adopted in the literature. Using the existence
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of scaling laws for the system of equations considered, we extend the results
obtained for heavy nuclei to the case of massive nuclear density cores. The
novelty in this article is to show how both the considerations of heavy nuclei
and of systems of macroscopic astrophysical dimensions can take advantage
from a rigorous and analytic solution of the Thomas-Fermi relativistic equa-
tions and the beta equilibrium conditions. This task is achieved by obtaining
explicit analytic solutions fulfilling precise boundary conditions and using
the scaling laws introduced in this article.

Indeed the Thomas-Fermi treatment has been considered also in the con-
text of quark stars with a charge and a density distribution analogous to the
one of massive nuclear density cores we consider in this article Itoh (1970);
Witten (1984); Alcock et al. (1986); Kettner et al. (1995); Usov (1998). There are
however a variety of differences both in the boundary conditions adopted
and in the solution obtained. In the present article we show that we can
indeed obtain overcritical electric fields at nuclear density on macroscopic
scales of Rc ≈ 10 Km and M ≈ 1M⊙ for existing field theories involving
only neutrons, protons and electrons and their fundamental interactions and
no quarks present. We obtain explicit analytic solutions of the relativistic
Thomas-Fermi equations, self-consistently solved with the condition of beta
equilibrium. Such analytic solutions allow to give explicit expressions for the
Coulomb energy, surface energy and Newtonian gravitational energy of such
massive nuclear density cores.

These cores are stable against fission (see Eq. (A.1.22)), the surface tension
determines the sharpness of their boundary (see Eq. (A.1.28)) and the gravi-
tational interaction, at Newtonian level, balances the Coulomb repulsion for
mass numbers larger than the critical value given by Eq. (A.1.25).

As a by-product of these results, we also conclude that the arguments of-
ten quoted concerning limits on the electric fields of an astrophysical system
based on a free test particle (the dust approximation) considering only the
gravitational and electric interactions

(Emax)dust ≈ me

e

mnc3

h̄

mn

mPlanck
, (A.1.29)

(

Q√
GM

)

dust

≈
√

G
me

e
=

1√
α

me

mPlanck
, (A.1.30)

appear to be inapplicable for A ∼ (mPlanck/mn)3. Here nuclear densities
are reached and the roles of all fundamental interactions, including weak
and strong interactions in addition to the electromagnetic and gravitational
ones and including as well quantum statistics, have to be taken into account
through the relativistic Thomas-Fermi model. Eqs. (A.1.29) and (A.1.30) are
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replaced by Eqs. (A.1.17) and (A.1.21),

Emax ≈ 0.95
√

α

∆2

mPlanck

me

(

mπ

mn

)2

(Emax)dust, (A.1.31)

Q√
GM

≈ Np

A

√
α

mPlanck

me

(

Q√
GM

)

dust

. (A.1.32)
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A.2. On the relativistic Thomas-Fermi treatment

of compressed atoms and compressed nuclear

matter cores of stellar dimensions

A.2.1. Introduction

In a classic article Baym et al. (1971a) presented the problem of matching, in
a neutron star, a liquid core, composed of Nn neutrons, Np protons and Ne

electrons, to the crust taking into account the electrodynamical and surface
tension effects. After discussing the different aspects of the problem they con-
cluded: The details of this picture requires further elaboration; this is a situation for
which the Thomas-Fermi method is useful. This statement, in first instance, may
appear surprising: the Thomas-Fermi model has been extensively applied in
atomic physics (see e.g. Gombás (1949); March (1957); Lundqvist and March
(1983)), also has been applied extensively in atomic physics in its relativis-
tic form (see e.g. Ferreirinho et al. (1980); Ruffini and Stella (1981)) as well
as in the study of atoms with heavy nuclei in the classic works of Migdal
et al. (1976, 1977). Similarly there have been considerations of relativistic
Thomas-Fermi model for quark stars pointing out the existence of critical
electric fields on their surfaces (see e.g. Alcock et al. (1986); Usov (1998)).
Similar results have also been obtained by Alford et al. (2001) in the transi-
tion at very high densities, from the normal nuclear matter phase in the core
to the color-flavor-locked phase of quark matter in the inner core of hybrid
stars. No example exists of the application of the electromagnetic Thomas-
Fermi model for neutron stars. This problem can indeed be approached with
merit by studying the simplified but rigorous concept of a nuclear matter core
of stellar dimensions which fulfills the relativistic Thomas-Fermi equation as
discussed by Ruffini et al. (2007c), by Rotondo et al. (2011e) and by Popov
(2010). As we will see this work leads to the prediction of the existence of a
critical electric field at the interface between the core and the crust of a neu-
tron star.

In Ruffini et al. (2007c) and Rotondo et al. (2011e) it is described a degener-
ate system of Nn neutrons, Np protons and Ne electrons constrained to a con-
stant density distribution for the protons and it is solved the corresponding
relativistic Thomas-Fermi equation and derived for the neutrons the distri-
bution following the implementation of the beta equilibrium condition. This
generalizes e.g. the works of Migdal et al. (1976, 1977); Popov (1971b,a) and
Pieper and Greiner (1969); Greenberg and Greiner (1982) by eliminating the
constraint Np ≈ A/2, clearly not valid for heavy nuclei, and enforcing self-
consistently in a new relativistic Thomas-Fermi equation the condition of beta
equilibrium. Using then the existence of scaling laws we have extended in
Rotondo et al. (2011e) the results from heavy nuclei to the case of nuclear
matter cores of stellar dimensions. In both these treatments we had assumed
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the Fermi energy of the electrons EF
e = 0. The aim of this article is to proceed

with this dual approach and to consider first the case of compressed atoms
and then, using the existence of scaling laws, the compressed nuclear mat-
ter cores of stellar dimensions with a positive value of their electron Fermi
energies.

It is well known that Salpeter has been among the first to study the behav-
ior of matter under extremely high pressures by considering a Wigner-Seitz
cell of radius RWS (Salpeter, 1961). Salpeter assumed as a starting point the
nucleus point-like and a uniform distribution of electrons within a Wigner-
Seitz cell, and then considered corrections to the above model due to the in-
homogeneity of electron distribution. The first correction corresponds to the
inclusion of the lattice energy EC = −(9N2

pα)/(10RWS), which results from
the point-like nucleus-electron Coulomb interaction and, from the electron-
electron Coulomb interaction inside the cell of radius RWS. The second cor-
rection is given by a series-expansion of the electron Fermi energy about the
average electron density ne of the uniform approximation. The electron den-
sity is then assumed equals to ne[1 + ǫ(r)] with ǫ(r) considered as infinitesi-
mal. The Coulomb potential energy is assumed to be the one of the point-like
nucleus with the uniform distribution of electrons of density ne thus the cor-
rection given by ǫ(r) is neglected on the Coulomb potential. The electron dis-
tribution is then calculated at first-order by expanding the relativistic electron
kinetic energy about its value given by the uniform approximation consider-
ing as infinitesimal the ratio eV/EF

e between the Coulomb potential energy

eV and the electron Fermi energy EF
e =

√

[cPF
e (r)]

2 + m2
e c4 − mec

2 − eV. The
inclusion of each additional Coulomb correction results in a decreasing of the
pressure of the cell PS by comparison to the uniform one.

It is quite difficult to assess the self-consistency of all the recalled different
approximations adopted by Salpeter. In order to validate and also to see the
possible limits of the Salpeter approach, we consider the relativistic general-
ization of the Feynman, Metropolis, Teller treatment (Feynman et al., 1949)
which takes automatically and globally into account all electromagnetic and
special relativistic contributions. We show explicitly how this new treatment
leads in the case of atoms to electron distributions markedly different from
the ones often adopted in the literature of constant electron density distri-
butions. At the same time it allows to overcome some of the difficulties in
current treatments.

Similarly the point-like description of the nucleus often adopted in litera-
ture is confirmed to be unacceptable in the framework of a relativistic treat-
ment.

In Sec. A.2.2 we first recall the non-relativistic treatment of the compressed
atom by Feynman, Metropolis and Teller. In Sec. A.2.3 we generalize that
treatment to the relativistic regime by integrating the relativistic Thomas-
Fermi equation, imposing also the condition of beta equilibrium. In Sec. A.2.4
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we first compare the new treatment with the one corresponding to a uniform
electron distribution often used in the literature and to the Salpeter treat-
ment. We also compare and contrast the results of the relativistic and the
non-relativistic treatment.

In Sec. A.2.5, using the same scaling laws adopted by Ruffini et al. (2007c)
and Rotondo et al. (2011e) we turn to the case of nuclear matter cores of stellar
dimensions with mass numbers A ≈ (mPlanck/mn)3 ∼ 1057 or Mcore ∼ M⊙
where mn is the neutron mass and mPlanck = (h̄c/G)1/2 is the Planck mass.
Such a configuration presents global but not local charge neutrality. Analytic
solutions for the ultra-relativistic limit are obtained. In particular we find:

1) explicit analytic expressions for the electrostatic field and the Coulomb
potential energy,

2) an entire range of possible Fermi energies for the electrons between zero
and a maximum value (EF

e )max, reached when RWS = Rc, which can be ex-
pressed analytically,

3) the explicit analytic expression of the ratio between the proton number
Np and the mass number A when RWS = Rc.

We turn then in Sec. A.2.6 to the study of the compressional energy of the
nuclear matter cores of stellar dimensions for selected values of the electron
Fermi energy. We show that the solution with EF

e = 0 presents the largest
value of the electrodynamical structure.

We finally summarize the conclusions in Sec. A.2.7.

A.2.2. The Thomas-Fermi model for compressed atoms: the

Feynman-Metropolis-Teller treatment

The classical Thomas-Fermi model

The Thomas-Fermi model assumes that the electrons of an atom constitute a
fully degenerate gas of fermions confined in a spherical region by the Coulomb
potential of a point-like nucleus of charge +eNp. Feynman, Metropolis and
Teller have shown that this model can be used to derive the equation of state
of matter at high pressures by considering a Thomas-Fermi model confined
in a Wigner-Seitz cell of radius RWS (Feynman et al., 1949).

We recall that the condition of equilibrium of the electrons in an atom, in
the non-relativistic limit, is expressed by

(PF
e )

2

2me
− eV = EF

e , (A.2.1)

where me is the electron mass, V is the electrostatic potential and EF
e is their

constant Fermi energy.

1339



A. Nuclear and Atomic Astrophysics

The electrostatic potential fulfills, for r > 0, the Poisson equation

∇2V = 4πene, (A.2.2)

where the electron number density ne is related to the Fermi momentum PF
e

by

ne =
(PF

e )
3

3π2h̄3
. (A.2.3)

For neutral atoms and ions ne vanishes at the boundary so the electron Fermi
energy is, respectively, zero or negative. In the case of compressed atoms
ne does not vanish at the boundary while the Coulomb potential energy eV
does. Consequently EF

e is positive.

Defining

eV(r) + EF
e = e2Np

φ(r)

r
, (A.2.4)

and introducing the new dimensionless radial coordinate η as

r = bη with b =
(3π)2/3

27/3

1

N1/3
p

h̄2

mee2
=

σ

N1/3
p

rBohr, (A.2.5)

where σ = (3π)2/3/27/3 ≈ 0.88, rBohr = h̄2/(mee2) is the Bohr radius, we
obtain the following expression for the electron number density

ne(η) =
Np

4πb3

(

φ(η)

η

)3/2

, (A.2.6)

and then Eq. (A.2.2) can be written in the form

d2φ(η)

dη2
=

φ(η)3/2

η1/2
, (A.2.7)

which is the classic Thomas-Fermi equation. A first boundary condition for
this equation follows from the point-like structure of the nucleus

φ(0) = 1. (A.2.8)

A second boundary condition comes from the conservation of the number of

electrons Ne =
∫ RWS

0 4πne(r)r
2dr

1 − Ne

Np
= φ(η0)− η0φ′(η0), (A.2.9)
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where η0 = RWS/b defines the radius RWS of the Wigner-Seitz cell. In the case

 0
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Figure A.4.: Physically relevant solutions of the Thomas-Fermi Equation
(A.2.7) with the boundary conditions (A.2.8) and (A.2.9). The curve 1 refers
to a neutral compressed atom. The curve 2 refers to a neutral free atom. The
curve 3 refers to a positive ion. The dotted straight line is the tangent to the
curve 1 at the point (η0, φ(η0)) corresponding to overall charge neutrality (see
Eq. (A.2.9)).

of compressed atoms Ne = Np so the Coulomb potential energy eV vanishes
at the boundary RWS. As a result, using Eqs. (A.2.1) and (A.2.3), the Fermi
energy of electrons satisfies the universal relation

σrBohr

e2

EF
e

N4/3
p

=
φ(η0)

η0
, (A.2.10)

while the Wigner-Seitz cell radius RWS satisfies the universal relation

RWS

σrBohr N−1/3
p

= η0. (A.2.11)

Therefore in the classic treatment η0 can approach zero and consequently the
range of the possible values of the Fermi energy extends from zero to infinity.

The results are summarized in Figs. A.4 and A.5.

The Thomas-Fermi-Dirac model

Dirac has introduced modifications to the original Thomas-Fermi theory to
include effects of the exchange interaction (Dirac, 1930). In this case the con-
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Figure A.5.: The electron Fermi energy EF
e , in units of e2N4/3

p /(σrBohr) is plot-

ted as a function of the Wigner-Seitz cell radius RWS, in units of σrBohr N−1/3
p

(see Eqs. (A.2.10), (A.2.11)). Points refer to the numerical integrations of the
Thomas-Fermi equation (A.2.7) performed originally by Feynman, Metropo-
lis and Teller in Feynman et al. (1949).

dition of equilibrium of the electrons in the atom is generalized as follows

(PF
e )

2

2me
− eV − e2

πh̄
PF

e = EF
e . (A.2.12)

The electron number density is now connected to the Coulomb potential
energy by

ne =
1

3π5

1

r3
Bohr

[

1 +

√

1 + 2π2
rBohr

e2
(eV + EF

e )

]3

. (A.2.13)

Defining

1

2π2

e2

rBohr
+ eV(r) + EF

e = e2Np
χ(r)

r
, (A.2.14)

the Eq. (A.2.2) can be written in dimensionless form as
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d2φ(η)

dη2
= η

[

d +

(

φ(η)

η

)1/2
]3

, (A.2.15)

where d = (3/(32π2))1/3(1/Np)2/3. The boundary condition for Eq. (A.2.15)
are φ(0) = 1 and η0φ′(η0) = φ(η0).

A.2.3. The relativistic generalization of the

Feynman-Metropolis-Teller treatment

The relativistic Thomas-Fermi model for atoms

In the relativistic generalization of the Thomas-Fermi equation the point-like
approximation of the nucleus must be abandoned (Ferreirinho et al., 1980;
Ruffini and Stella, 1981) since the relativistic equilibrium condition

EF
e =

√

(PF
e c)2 + m2

e c4 − mec
2 − eV(r) , (A.2.16)

which generalizes the Eq. (A.2.1), would lead to a non-integrable expression
for the electron density near the origin. Consequently we adopt an extended
nucleus. Traditionally the radius of an extended nucleus is given by the phe-
nomenological relation Rc = r0A1/3 where A is the number of nucleons and
r0 = 1.2 × 10−13 cm. Further it is possible to show from the extremization of
the semi-empirical Weizsacker mass-formula that the relation between A and
Np is given by (see e.g. Segré (1977) and Ferreirinho et al. (1980))

Np ≈
[

2

A
+

2aC

aA

1

A1/3

]−1

≈
[

2

A
+

3

200

1

A1/3

]−1

, (A.2.17)

where aC ≈ 0.71 MeV, aA ≈ 93.15 MeV are the Coulomb and the asymmetry
coefficients respectively. In the limit of small A Eq. (A.2.17) gives

Np ≈ A

2
. (A.2.18)

In Rotondo et al. (2011e) we have relaxed the condition Np ≈ A/2 adopted

e.g. in Migdal et al. (1977) as well as the condition Np ≈ [2/A+ 3/(200A1/3)]−1

adopted e.g. in Ferreirinho et al. (1980); Ruffini and Stella (1981) by imposing
explicitly the beta decay equilibrium between neutron, protons and electrons.

In particular, following the previous treatments (see e.g. Rotondo et al.
(2011e)), we have assumed a constant distribution of protons confined in a
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radius Rc defined by

Rc = ∆
h̄

mπc
N1/3

p , (A.2.19)

where mπ is the pion mass and ∆ is a parameter such that ∆ ≈ 1 (∆ < 1) corre-
sponds to nuclear (supranuclear) densities when applied to ordinary nuclei.
Consequently, the proton density can be written as

np(r) =
Np

4
3πR3

c

θ(Rc − r) =
3

4π

m3
πc3

h̄3

1

∆3
θ(Rc − r), (A.2.20)

where θ(x) is the Heaviside function which by definition is given by

θ(x) =

{

0, x < 0,
1, x > 0.

(A.2.21)

The electron density is given by

ne(r) =
(PF

e )
3

3π2h̄3
=

1

3π2h̄3c3

[

e2V2(r) + 2mec
2eV(r)

]3/2
, (A.2.22)

where V is the Coulomb potential.

The overall Coulomb potential satisfies the Poisson equation

∇2V(r) = −4πe
[

np(r)− ne(r)
]

, (A.2.23)

with the boundary conditions V(∞) = 0 (due to global charge neutrality)
and finiteness of V(0).

Using Eqs. (A.2.4), (A.2.5) and replacing the particle densities (A.2.20) and
(A.2.22) into the Poisson equation (A.2.23) we obtain the relativistic Thomas-
Fermi equation

d2φ(η)

dη2
= −3η

η3
c

θ(ηc − η) +
φ3/2

η1/2



1 +

(

Np

Ncrit
p

)4/3
φ

η





3/2

,

(A.2.24)

where φ(0) = 0, φ(∞) = 0 and ηc = Rc/b. The critical number of protons
Ncrit

p is defined by

Ncrit
p =

√

3π

4
α−3/2, (A.2.25)

where, as usual, α = e2/(h̄c).
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It is interesting that by introducing the new dimensionless variable

x =
r

λπ
=

b

λπ
η, (A.2.26)

and the function

χ = αNpφ, (A.2.27)

where λπ = h̄/(mπc), Eq. (A.2.24) assumes a canonical form, the master
relativistic Thomas-Fermi equation (see Ruffini (2008b))

1

3x

d2χ(x)

dx2
= − α

∆3
θ(xc − x) +

4α

9π

[

χ2(x)

x2
+ 2

me

mπ

χ

x

]3/2

,

(A.2.28)

where xc = Rc/λπ with the boundary conditions χ(0) = 0, χ(∞) = 0.
The neutron density nn(r), related to the neutron Fermi momentum PF

n =

(3π2h̄3nn)
1/3, is determined, as in the previous case Rotondo et al. (2011e),

by imposing the condition of beta equilibrium

EF
n =

√

(PF
n c)2 + m2

nc4 − mnc2

=
√

(PF
p c)2 + m2

pc4 − mpc2 + eV(r), (A.2.29)

which in turn is related to the proton density np and the electron density
by Eqs. (A.2.22), (A.2.23). Integrating numerically these equations we have
obtained a new generalized relation between A and Np for any value of A.
In the limit of small A this result agrees with the phenomenological relations
given by Eqs. (A.2.17, A.2.18), as is clearly shown in Fig. (A.6).

The relativistic Thomas-Fermi model for compressed atoms

We turn now to the case of compressed atoms in which the electron Fermi
energy is positive. The relativistic generalization of the equilibrium condition
(A.2.1) now reads

EF
e =

√

(PF
e c)2 + m2

e c4 − mec
2 − eV(r) > 0 . (A.2.30)

Adopting an extended-nucleus with a radius given by Eq. (A.2.19) and a pro-
ton density given by Eq. (A.2.20) the Poisson equation (A.2.23), with the fol-
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Figure A.6.: The A-Np relation at nuclear density (solid line) obtained from
first principles compared with the phenomenological expressions given by
Np ≈ A/2 (dashed line) and Eq. (A.2.17) (dotted line). The asymptotic value,

for A → (mPlanck/mn)3, is Np ≈ 0.0046A.

lowing electron density

ne(r) =
(PF

e )
3

3π2h̄3
=

1

3π2h̄3c3

[

e2V̂2(r) + 2mec
2eV̂(r)

]3/2
, (A.2.31)

gives again the master relativistic Thomas-Fermi equation (A.2.28) where
χ/r = eV̂(r)/(ch̄) and eV̂ = eV + EF

e .

In this case Eq. (A.2.28) has to be integrated with the boundary condi-
tions χ(0) = 0, χ(xWS) = xWSχ′(xWS), xWS = RWS/λπ . Using Eqs. (A.2.4),
(A.2.26) and (A.2.27) we obtain the electron Fermi energy in the form

EF
e = mπc2 χ(xWS)

xWS
. (A.2.32)

The neutron density nn(r), related to the neutron Fermi momentum PF
n =

(3π2h̄3nn)1/3, is determined by imposing the condition of beta equilibrium

EF
n =

√

(PF
n c)2 + m2

nc4 − mnc2

=
√

(PF
p c)2 + m2

pc4 − mpc2 + eV(r) + EF
e . (A.2.33)

Using this approach, it is then possible to determine the beta equilibrium
nuclide as a function of the density of the system. Infact, electrons and pro-
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tons can be converted to neutrons in inverse beta decay p+ e− → n+ νe if the

condition EF
n <

√

(PF
p c)2 + m2

pc4 − mpc2 + eV(r) + EF
e holds. The condition

of equilibrium (A.2.33) is crucial, for example, in the construction of a self-
consistent equation of state of high energy density matter present in white
dwarfs and neutron star crusts. In the case of zero electron Fermi energy the
generalized A − Np relation of Fig. (A.6) is obtained.

The relativistic Thomas-Fermi-Dirac model for compressed atoms

We now take into account the exchange corrections to the relativistic Thomas-
Fermi equation (A.2.28). In this case we have (see Migdal et al. (1977) for
instance)

EF
e =

√

(cPF
e )

2 + m2
e c4 − mec

2 − eV − α

π
cPF

e = constant . (A.2.34)

Introducing the function χ(r) as before

EF
e + eV = eV̂ = h̄c

χ

r
, (A.2.35)

we obtain the electron number density

ne =
1

3π2h̄3c3

{

γ
(

mec2 + eV̂
)

+
[

(

eV̂
)2

+ 2mec
2eV̂

]1/2

×
[

(1 + γ2)(mec2 + eV̂)2 − m2
e c4

(mec2 + eV̂)2 − m2
e c4

]1/2
}3

, (A.2.36)

where γ = (α/π)/(1 − α2/π2).

If we take the approximation 1 + γ2 ≈ 1 the above equation becomes

ne =
1

3π2h̄3c3

{

γ
(

mec
2 + eV̂

)

+
[

(

eV̂
)2

+ 2mec
2eV̂

]1/2
}3

. (A.2.37)

The second term on the right-hand-side of Eq. (A.2.37) has the same form of
the electron density given by the relativistic Thomas-Fermi approach with-
out the exchange correction (A.2.31) and therefore the first term shows the
explicit contribution of the exchange term to the electron density.

Using the full expression of the electron density given by Eq. (A.2.36) we
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obtain the relativistic Thomas-Fermi-Dirac equation

1

3x

d2χ(x)

dx2
= − α

∆3
θ(xc − x) +

4α

9π

{

γ

(

me

mπ
+

χ

x

)

+

[

(χ

x

)2
+ 2

me

mπ

χ

x

]1/2

×
[

(1 + γ2)(me/mπ + χ/x)2 − (me/mπ)2

(me/mπ + χ/x)2 − (me/mπ)2

]1/2
}3

, (A.2.38)

which by applying the approximation 1 + γ2 ≈ 1 becomes

1

3x

d2χ(x)

dx2
= − α

∆3
θ(xc − x) +

4α

9π

{

γ

(

me

mπ
+

χ

x

)

+

[

(χ

x

)2
+ 2

me

mπ

χ

x

]1/2
}3

.

(A.2.39)

The boundary conditions for Eq. (A.2.38) are χ(0) = 0 and χ(xWS) =
xWSχ′(xWS). The neutron density can be obtained as before by using the
beta equilibrium condition (A.2.33) with the electron Fermi energy given by
Eq. (A.2.34).

In Fig. A.7 we show the results of the numerical integration of the rela-
tivistic Thomas-Fermi equation (A.2.28) and of the relativistic Thomas-Fermi-
Dirac equation (A.2.38) for helium, carbon and iron. In particular, we show

the electron Fermi energy multiplied by N−4/3
p as a function of the ratio

RWS/Rc between the Wigner-Seitz cell radius RWS and the nucleus radius
Rc given by Eq. (A.2.19).

The effects of the exchange term are appreciable only in the low density
(low compression) region, i.e. when RWS >> Rc (see Fig. A.7). We can
then conclude in total generality that the correction given by the Thomas-
Fermi-Dirac exchange term is, small in the non-relativistic low compression
(low density) regime, and negligible in the relativistic high compression (high
density) regime.

A.2.4. Comparison and contrast with approximate treatments

There exists in the literature a variety of semi-qualitative approximations
adopted in order to describe the electron component of a compressed atom
(see e.g. Bürvenich et al. (2007) for applications of the uniform approxima-
tion and e.g. Chabrier and Potekhin (1998); Potekhin et al. (2009); Douchin
and Haensel (2001); Haensel and Zdunik (1990a,b), for applications of the
Salpeter approximate treatment).

We shall see how the relativistic treatment of the Thomas-Fermi equation
affects the current analysis of compressed atoms in the literature by introduc-
ing qualitative and quantitative differences which deserve attention.
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Figure A.7.: The electron Fermi energy in units of mπc2N4/3
p is plotted for

helium, carbon and iron, as a function of the ratio RWS/Rc in the relativistic
Feynman-Metropolis-Teller (FMT) treatment with and without the exchange
effects. Here RWS denotes the Wigner-Seitz cell radius and Rc is the nucleus
radius as given by Eq. (A.2.19). It is clear that the exchange terms are appre-
ciable only in the low density region and are negligible as RWS → Rc

.

Relativistic FMT treatment vs. relativistic uniform approximation

One of the most used approximations in the treatment of the electron distri-
bution in compressed atoms is the one in which, for a given nuclear charge
+eNp, the Wigner-Seitz cell radius RWS is defined by

Np =
4π

3
R3

WSne, (A.2.40)

where ne = (PF
e )

3/(3π2h̄3). The Eq. (A.2.40) ensures the global neutrality
of the Wigner-Seitz cell of radius RWS assuming a uniform distribution of
electrons inside the cell.

We shall first compare the Feynman-Metropolis-Teller treatment, previ-
ously introduced, with the uniform approximation for the electron distri-
bution. In view of the results of the preceding section, hereafter we shall
consider the non-relativistic and the relativistic formulation of the Feynman-
Metropolis-Teller treatment with no Thomas-Fermi-Dirac exchange correc-
tion.

In Fig. A.8 we have plotted the electron number density obtained from
Eq. (A.2.31) where the Coulomb potential is related to the function χ, which
is obtained from numerical integration of the relativistic Thomas-Fermi equa-
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tion (A.2.28) for different compressions for helium and iron. We have nor-
malized the electron density to the average electron number density n0 =
3Ne/(4πR3

WS) = 3Np/(4πR3
WS) as given by Eq. (A.2.40).

We can see in Fig. A.8 how our treatment, based on the numerical inte-
gration of the relativistic Thomas-Fermi equation (A.2.28) and imposing the
condition of beta equilibrium (A.2.33), leads to electron density distributions
markedly different from the constant electron density approximation.

From Eqs. (A.2.30), (A.2.40) and taking into account the global neutrality
condition of the Wigner-Seitz cell eV(RWS) = 0, the electron Fermi energy in
the uniform approximation can be written as

EF
e ≃






− me

mπ
+

√

√

√

√

(

me

mπ

)2

+

(

9π

4

)2/3 N2/3
p

x2
WS






mπc2. (A.2.41)

We show in Fig. A.9 the electron Fermi energy as a function of the average
electron density n0 = 3Ne/(4πR3

WS) = 3Np/(4πR3
WS) in units of the nuclear

density nnuc = 3A/(4π∆3Npλ3
π). For selected compositions we show the

results for the relativistic Feynman-Metropolis-Teller treatment, based on the
numerical integration of the relativistic Thomas-Fermi equation (A.2.28), and
for the relativistic uniform approximation.

As clearly shown in Fig. A.8 and summarized in Fig. A.9 the relativistic
treatment leads to results strongly dependent at low compression from the
nuclear composition. The corresponding value of the electron Fermi energy
derived from a uniform approximation overevaluates the true electron Fermi
energy (see Fig. A.9). In the limit of high compression the relativistic curves
asymptotically approach the uniform one (see also Fig. A.8).

The uniform approximation becomes exact in the limit when the electron
Fermi energy acquires its maximum value as given by

(EF
e )max ≃



− me

mπ
+

√

(

me

mπ

)2

+

(

3π2

2

)2/3 (Np

A

)2/3


mπc2, (A.2.42)

which is attained when RWS coincides with the nuclear radius Rc. Here, the
maximum electron Fermi energy (A.2.42) is obtained by replacing in Eq. (A.2.41)
the value of the normalized Wigner-Seitz cell radius xWS = xc = Rc/λπ ≈
[(3/2)π]1/3 A1/3.

Relativistic FMT treatment vs. Salpeter approximate treatment

Corrections to the uniform distribution were also studied by Salpeter (1961)
and his approximations are largely applied in physics (see e.g. Chabrier and
Potekhin (1998); Potekhin et al. (2009)) and astrophysics (see e.g. Douchin
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and Haensel (2001); Haensel and Zdunik (1990a,b)).

Keeping the point-like nucleus assumption, Salpeter (1961) studied the cor-
rections to the above models due to the inhomogeneity of the electron distri-
bution inside the Wigner-Seitz cell. He expressed an analytic formula for
the total energy of a Wigner-Seitz cell based on Coulomb corrections to the
uniform distribution of electrons. The first correction corresponds to the in-
clusion of the lattice energy EC = −(9N2

pα)/(10RWS), which results from
the point-like nucleus-electron Coulomb interaction and, from the electron-
electron Coulomb interaction inside the cell of radius Rws. The second cor-
rection is given by a series-expansion of the electron Fermi energy about the
average electron density ne given by Eq. (A.2.40) the uniform approxima-
tion ne = 3Np/(4πR3

WS). The electron density is then assumed equals to
ne[1 + ǫ(r)] with ǫ(r) considered as infinitesimal. The Coulomb potential
energy is assumed to be the one of the point-like nucleus with the uniform
distribution of electrons of density ne, thus the correction given by ǫ(r) is ne-
glected on the Coulomb potential. The electron distribution is then calculated
at first-order by expanding the relativistic electron kinetic energy

ǫk =
√

[cPF
e (r)]

2 + m2
e c4 − mec

2

=
√

(3π2ne)2/3[1 + ǫ(r)]2/3 + m2
e c4 − mec

2, (A.2.43)

about its value given by the uniform approximation

ǫunif
k =

√

(3π2ne)2/3 + m2
e c4 − mec

2 , (A.2.44)

considering as infinitesimal the ratio eV/EF
e between the Coulomb potential

energy eV and the electron Fermi energy EF
e =

√

[cPF
e (r)]

2 + m2
e c4 − mec

2 −
eV.

The effect of the Dirac electron-exchange correction (Dirac, 1930) on the
equation of state was also considered by Salpeter (1961). However, adopting
the general approach of Migdal et al. (1977), these effects are negligible in the
relativistic regime (see Subsec. A.2.3 ).

The inclusion of each additional Coulomb correction results in a decreas-
ing of the pressure of the cell PS. However, despite to be very interesting in
identifying piecewise contributions to the total pressure, the validity of the
Salpeter approach needs a verification by a more general treatment. For in-
stance, the failure of the Salpeter formulas can be seen at densities of the order
of ∼ 102 − 103 g cm−3 for nuclei with large Np, as in the case of iron, where the
pressure becomes negative (see Table (A.1)). Therefore, the problem of solv-
ing the relativistic Thomas-Fermi equation within the Feynman, Metropolis,
Teller approach becomes a necessity, since this approach gives all the possible
Coulomb and relativistic contributions automatically and correctly.
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Table A.1.: Pressure for iron as a function of the density ρ in the uniform
approximation (P), in the Salpeter approximation (PS) and in the relativis-
tic Feynman-Metropolis-Teller approach (PFMTrel). Here xS = PF

e,S/(mec),

xFMTrel = PF
e /(mec) are respectively the normalized Salpeter Fermi momen-

tum and the relativistic Feynmann-Metropolis-Teller Fermi momentum.

ρ xS xFMTrel P PS PFMTrel

(g/cm3) (bar) (bar) (bar)
2.63 × 102 0.05 0.0400 2.9907× 1010 −1.8800 × 108 9.9100× 109

2.10 × 103 0.10 0.0857 9.5458× 1011 4.4590× 1011 5.4840 × 1011

1.68 × 104 0.20 0.1893 3.0227× 1013 2.2090× 1013 2.2971 × 1013

5.66 × 104 0.30 0.2888 2.2568× 1014 1.8456× 1014 1.8710 × 1014

1.35 × 105 0.40 0.3887 9.2964× 1014 8.0010× 1014 8.0790 × 1014

2.63 × 105 0.50 0.4876 2.7598× 1015 2.4400× 1015 2.4400 × 1015

4.53 × 105 0.60 0.5921 6.6536× 1015 6.0040× 1015 6.0678 × 1015

7.19 × 105 0.70 0.6820 1.3890× 1016 1.2693× 1016 1.2810 × 1016

1.08 × 106 0.80 0.7888 2.6097× 1016 2.4060× 1016 2.4442 × 1016

2.10 × 106 1.00 0.9853 7.3639× 1016 6.8647× 1016 6.8786 × 1016

3.63 × 106 1.20 1.1833 1.6902× 1017 1.5900× 1017 1.5900 × 1017

5.77 × 106 1.40 1.3827 3.3708× 1017 3.1844× 1017 3.1898 × 1017

8.62 × 106 1.6 1.5810 6.0754× 1017 5.7588× 1017 5.7620 × 1017

1.23 × 107 1.80 1.7790 1.0148× 1018 9.6522× 1017 9.6592 × 1017

1.68 × 107 2.0 1.9770 1.5981× 1018 1.5213× 1018 1.5182 × 1018

3.27 × 107 2.50 2.4670 4.1247× 1018 3.9375× 1018 3.9101 × 1018

5.66 × 107 3.00 2.965 8.8468× 1018 8.4593× 1018 8.4262 × 1018

1.35 × 108 4.00 3.956 2.9013× 1019 2.7829× 1019 2.7764 × 1019

2.63 × 108 5.00 4.939 7.2160× 1019 6.9166× 1019 6.9062 × 1019

8.85 × 108 7.50 7.423 3.7254× 1020 3.5700× 1020 3.5700 × 1020
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Relativistic FMT treatment vs. non-relativistic FMT treatment

We now compare and contrast the Fermi energy, given by Eq. (A.2.32), of a
compressed atom in the non-relativistic and the relativistic limit (see Fig. A.10).

There are major differences:

1) The electron Fermi energy in the relativistic treatment is strongly de-
pendent on the nuclear composition, while the non-relativistic treatment presents
a universal behavior in the units of Fig. A.10. In the limit of low densities the
relativistic curves approach the universal non-relativistic curve. In the non

relativistic treatment the ratio EF
e /(mπc2N4/3

p ) does not depend on the num-

ber of protons Np if the Wigner-Seitz cell radius RWS is multiplied by N1/3
p

(see Eqs. (A.2.10), (A.2.11)). This universality is lost in the relativistic treat-
ment since there is no way to eliminate the dependence of the electron Fermi
energy on the nuclear composition (see Eq. (A.2.28)).

2) The relativistic treatment leads to values of the electron Fermi energy
consistently smaller than the ones of the non-relativistic treatment.

3) While in the non-relativistic treatment the electron Fermi energy can
reach, by compression, infinite values as RWS → 0, in the relativistic treat-
ment it reaches a perfectly finite value given by Eq. (A.2.42) attained when
RWS coincides with the nuclear radius Rc.

It is clear then, from above considerations, the relativistic treatment of
the Thomas-Fermi equation introduces significant differences from the cur-
rent approximations in the literature: a) the uniform electron distribution
(Bürvenich et al., 2007), b) the approximate perturbative solutions depart-
ing from the uniform distribution (Salpeter, 1961) and c) the non-relativistic
treatment (Feynman et al., 1949). We have recently applied these results of
the relativistic Feynman, Metropolis, Teller treatment of a compressed atom
to the study of white dwarfs and their consequences on the determination of
their masses, radii and critical mass (Rotondo et al., 2011b).

A.2.5. Application to nuclear matter cores of stellar

dimensions

We turn now to nuclear matter cores of stellar dimensions of A ≃ (mPlanck/mn)3 ∼
1057 or Mcore ∼ M⊙.

Following the treatment presented in Rotondo et al. (2011e), we use the
existence of scaling laws and proceed to the ultra-relativistic limit of Eqs.
(A.2.20), (A.2.28), (A.2.31), (A.2.33). For positive values of the electron Fermi
energy EF

e , we introduce the new function φ = 41/3(9π)−1/3χ∆/x and the

new variable x̂ = kx where k = (12/π)1/6 √α∆−1, as well as the variable
ξ = x̂ − x̂c in order to describe better the region around the core radius.
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Eq. (A.2.28) becomes

d2φ̂(ξ)

dξ2
= −θ(−ξ) + φ̂(ξ)3 , (A.2.45)

where φ̂(ξ) = φ(ξ + x̂c) and the curvature term 2φ̂′(ξ)/(ξ + x̂c) has been
neglected.

The Coulomb potential energy is given by

eV(ξ) =

(

9π

4

)1/3 1

∆
mπc2φ̂(ξ)− EF

e , (A.2.46)

corresponding to the electric field

E(ξ) = −
(

35π

4

)1/6 √
α

∆2

m2
πc3

eh̄
φ̂′(ξ), (A.2.47)

and the electron number-density

ne(ξ) =
1

3π2h̄3c3

(

9π

4

)

1

∆3
(mπc2)3φ̂3(ξ). (A.2.48)

In the core center we must have ne = np. From Eqs. (A.2.20) and (A.2.48) we
than have that, for ξ = −x̂c, φ̂(−x̂c) = 1.

In order to consider a compressed nuclear density core of stellar dimen-
sions, we then introduce a Wigner-Seitz cell determining the outer boundary
of the electron distribution which, in the new radial coordinate ξ is character-
ized by ξWS. In view of the global charge neutrality of the system the electric
field goes to zero at ξ = ξWS. This implies, from Eq. (A.2.47), φ̂′(ξWS) = 0.

We now turn to the determination of the Fermi energy of the electrons in
this compressed core. The function φ̂ and its first derivative φ̂′ must be con-
tinuous at the surface ξ = 0 of the nuclear density core.

This boundary-value problem can be solved analytically and indeed Eq. (A.2.45)
has the first integral,

2[φ̂′(ξ)]2 =

{

φ̂4(ξ) − 4φ̂(ξ) + 3, ξ < 0,
φ̂4(ξ) − φ4(ξWS), ξ > 0,

(A.2.49)

with boundary conditions at ξ = 0:

φ̂(0) =
φ̂4(ξWS) + 3

4
,

φ̂′(0) = −

√

φ̂4(0)− φ̂4(ξWS)

2
. (A.2.50)
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Having fullfilled the continuity condition we integrate Eq. (A.2.49) obtaining
for ξ ≤ 0

φ̂(ξ) = 1 − 3
[

1 + 2−1/2 sinh(a −
√

3ξ)
]−1

, (A.2.51)

where the integration constant a has the value

sinh(a) =
√

2

(

11 + φ̂4(ξWS)

1 − φ̂4(ξWS)

)

. (A.2.52)

In the interval 0 ≤ ξ ≤ ξWS, the field φ̂(ξ) is implicitly given by

F

(

arccos
φ̂(ξWS)

φ̂(ξ)
,

1√
2

)

= φ̂(ξWS)(ξ − ξWS), (A.2.53)

where F(ϕ, k) is the elliptic function of the first kind, and F(0, k) ≡ 0. For
F(ϕ, k) = u, the inverse function ϕ = F−1(u, k) = am(u, k) is the well known
Jacobi amplitude. In terms of it, we can express the solution (A.2.53) for ξ > 0
as,

φ̂(ξ) = φ̂(ξWS)

{

cos

[

am

(

φ̂(ξWS)(ξ − ξWS),
1√
2

)]}−1

. (A.2.54)

In the present case of EF
e > 0 the ultra-relativistic approximation is indeed

always valid up to ξ = ξWS for high compression factors, i.e. for RWS ≃ Rc.
In the case EF

e = 0, ξWS → ∞, there is a breakdown of the ultra-relativistic
approximation when ξ → ξWS.

Details are given in Figs. A.11, A.12, A.13.

We can now estimate two crucial quantities of the solutions: the Coulomb
potential at the center of the configuration and the electric field at the surface
of the core

eV(0) ≃
(

9π

4

)1/3 1

∆
mπc2 − EF

e , (A.2.55)

Emax ≃ 2.4

√
α

∆2

(

mπ

me

)2

Ec|φ̂′(0)| , (A.2.56)

where Ec = m2
e c3/(eh̄) is the critical electric field for vacuum polarization.

These functions depend on the value φ̂(ξWS) via Eqs. (A.2.49)–(A.2.53). At
the boundary ξ = ξWS, due to the global charge neutrality, both the electric
field E(ξWS) and the Coulomb potential eV(ξWS) vanish. From Eq. (A.2.46),
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we determine the value of φ̂(ξ) at ξ = ξWS

φ̂(ξWS) = ∆

(

4

9π

)1/3 EF
e

mπc2
, (A.2.57)

as a function of the electron Fermi energies EF
e . From the above Eq. (A.2.57),

one can see that there exists a solution, characterized by the value of electron
Fermi energy

(EF
e )max

mπc2
=

1

∆

(

9π

4

)1/3

, (A.2.58)

such that φ̂(ξWS) = 1. From Eq. (A.2.53) and ξ = 0, we also have

ξWS(φ̂(ξWS)) =

{

1

φ̂(0)
F

[

arccos

(

4 − 3

φ̂(0)

)

,
1√
2

]}

. (A.2.59)

For φ̂(ξWS) = 1, from Eq. (A.2.50) follows φ̂(0) = 1 hence Eq. (A.2.59) be-
comes

ξWS(φ̂(0)) = F

[

0,
1√
2

]

. (A.2.60)

It is well known that if the inverse Jacobi amplitude F[0, 1/
√

2] is zero, then

ξWS(φ̂(ξWS) = φ̂(0) = 1) = 0. (A.2.61)

Indeed from φ̂(ξWS) = 1 follows φ̂(0) = 1 and ξWS = 0. When ξWS = 0
from Eq. (A.2.50) follows φ̂′(0) = 0 and, using Eq. (A.2.56), Emax = 0. In
other words for the value of EF

e fulfilling Eq. (A.2.57) no electric field exists
on the boundary of the core and from Eq. (A.2.48) and Eqs. (A.2.19, A.2.20)
it follows that indeed this is the solution fulfilling both global Ne = Np and
local ne = np charge neutrality. In this special case, starting from Eq. (A.2.33)
and A = Np + Nn, we obtain

(EF
e )

3/2
max =

9π
4 (h̄c)3 A

R3
c
− (EF

e )
3
max

23/2

[

(

9π
4 (h̄c)3 A

R3
c
− (EF

e )
3
max

)2/3
+ m2

nc4

]3/4
. (A.2.62)

In the ultra-relativistic approximation (EF
e )

3
max/9π

4 (h̄c)3 A
R3

c
<< 1 so Eq. (A.2.62)
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can be approximated to

(EF
e )max = 21/3 mn

mπ
γ

[

−1 +

√

1 +
β

2γ3

]2/3

mπc2, (A.2.63)

where

β =
9π

4

(

h̄

mnc

)3 A

R3
c

, γ =
√

1 + β2/3. (A.2.64)

The corresponding limiting value to the Np/A ratio is obtained as follows

Np

A
=

2γ3

β

[

−1 +

√

1 +
β

2γ3

]2

. (A.2.65)

Inserting Eqs. (A.2.63), (A.2.64) in Eq. (A.2.65) one obtains the ultra-relativistic
limit of Eq. (A.2.42), since the electron Fermi energy, in view of the scaling
laws introduced in Rotondo et al. (2011e), is independent of the value of A
and depends only on the density of the core.

The Np-independence in the limiting case of maximum electron Fermi en-
ergy attained when RWS = Rc, in which the ultra-relativistic treatment ap-
proaches the uniform one, and the Np-dependence for smaller compressions
RWS > Rc can be understood as follows. Let see the solution to the ultra-
relativistic equation (A.2.45) for small ξ > 0. Analogously to the Feynman-
Metropolis-Teller approach to the non-relativistic Thomas-Fermi equation,
we solve the ultra-relativistic equation (A.2.45) for small ξ. Expanding φ̂(ξ)
about ξ = 0 in a semi convergent power series,

φ̂(ξ)

φ̂(0)
= 1 +

∞

∑
n=2

anξn/2 (A.2.66)

and substituting it into the ultra-relativistic equation (A.2.45), we have

∞

∑
k=3

ak
k(k − 2)

4
ξ(k−4)/2 = φ2(0) exp

[

3 ln(1 +
∞

∑
n=2

anξn/2)

]

. (A.2.67)

This leads to a recursive determination of the coefficients:

a3 = 0, a4 = φ2(0)/2, a5 = 0, a6 = φ2(0)a2/2, a7 = 0,

a8 = φ2(0)(1 − a2
2)/8, · · ·, (A.2.68)

with a2 = φ̂′(0)/φ̂(0) determined by the initial slope, namely, the boundary
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condition φ̂′(0) and φ̂(0) in Eq. (A.2.50):

φ̂(0) =
φ̂4(ξWS) + 3

4
, φ̂′(0) = −

√

φ̂4(0)− φ̂4(ξWS)

2
(A.2.69)

Thus the series solution (A.2.66) is uniquely determined by the boundary
value φ̂(ξWS) at the Wigner-Seitz cell radius.

Now we consider the solution up to the leading orders

φ̂(ξ) = φ̂(0) + φ̂′(0)ξ +
1

2
φ̂3(0)ξ2 +

1

2
φ̂3(0)a2ξ3

+
1

8
φ̂3(0)(1 − a2

2)ξ
4 + · · ·. (A.2.70)

Using Eq. (A.2.70), the electron Fermi energy (A.2.57) becomes

EF
e = (EF

e )max

[

1 + a2ξWS +
1

2
φ̂2(0)(ξWS)2 +

1

2
φ̂2(0)a2(ξ

WS)3

+
1

8
φ̂2(0)(1 − a2

2)(ξ
WS)4 + · · ·

]

φ̂(0), (A.2.71)

where (EF
e )max = (9π/4)1/3∆−1 is the maximum Fermi energy which is at-

tained when the Wigner-Seitz cell radius equals the nucleus radius Rc (see
Eq. A.2.58). For φ̂(ξWS) < 1, we approximately have φ̂(0) = 3/4, φ̂′(0) =

−(3/4)2/
√

2 and the initial slope a2 = φ̂′(0)/φ̂(0) = −(3/4)/
√

2. Therefore
Eq. (A.2.71) becomes

EF
e ≈ (EF

e )max

[

1 − 3

4
√

2
ξWS +

1

2

(

3

4

)2

(ξWS)2 − 1

23/2

(

3

4

)3

(ξWS)3

+
1

8

(

3

4

)2(41

32

)

(ξWS)4 + · · ·
]

. (A.2.72)

By the definition of the coordinate ξ, we know all terms except the first term
in the square bracket depend on the values of Np. In the limit of maximum
compression when the electron Fermi energy acquires its maximum value,
namely when ξWS = 0, the electron Fermi energy (A.2.72) is the same as the
one obtained from the uniform approximation which is independent of Np.

For smaller compressions, namely for ξWS > 0 the electron Fermi energy
deviates from the one given by the uniform approximation becoming Np-
dependent.

In Fig. A.14 we plot the Fermi energy of electrons, in units of the pion rest
energy, as a function of the dimensionless parameter ξWS and, as ξWS → 0,
the limiting value given by Eq. (A.2.63) is clearly displayed.
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In Alcock et al. (1986), in order to study the electrodynamical properties of
strange stars, the ultra-relativistic Thomas-Fermi equation was numerically
solved in the case of bare strange stars as well as in the case of strange stars
with a crust (see e.g. curves (a) and (b) in Fig. 6 of Alcock et al. (1986)). In
Fig. 6 of Alcock et al. (1986) was plotted what they called the Coulomb po-
tential energy, which we will denote as VAlcock. The potential VAlcock was
plotted for different values of the electron Fermi momentum at the edge of
the crust. Actually, such potential VAlcock is not the Coulomb potential eV but
it coincides with our function eV̂ = eV + EF

e . Namely, the potential VAlcock

corresponds to the Coulomb potential shifted by the the Fermi energy of the
electrons. We then have from Eq. (A.2.46)

eV̂(ξ) =

(

9π

4

)1/3 1

∆
mπc2φ̂(ξ) = VAlcock. (A.2.73)

This explains why in Alcock et al. (1986), for different values of the Fermi
momentum at the crust the depth of the potential VAlcock remains unchanged.
Instead, the correct behavior of the Coulomb potential is quite different and,
indeed, its depth decreases with increasing of compression as can be seen in
Fig. A.11.

A.2.6. Compressional energy of nuclear matter cores of
stellar dimensions

We turn now to the compressional energy of these family of compressed
nuclear matter cores of stellar dimensions each characterized by a different
Fermi energy of the electrons. The kinematic energy-spectra of complete de-
generate electrons, protons and neutrons are

ǫi(p) =
√

(pc)2 + m2
i c4, p ≤ PF

i , i = e, p, n. (A.2.74)

So the compressional energy of the system is given by

E = EB + Ee + Eem , EB = Ep + En , (A.2.75)

Ei = 2
∫

i

d3rd3 p

(2πh̄)3
ǫi(p) , i = e, p, n , Eem =

∫

E2

8π
d3r . (A.2.76)

Using the analytic solution (A.2.54) we calculate the energy difference be-
tween two systems, I and I I,

∆E = E(EF
e (I I))− E(EF

e (I)), (A.2.77)

with EF
e (I I) > EF

e (I) ≥ 0, at fixed A and Rc.
We first consider the infinitesimal variation of the total energy δEtot with
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respect to the infinitesimal variation of the electron Fermi energy δEF
e

δE =

[

∂E

∂Np

]

VWS

[

∂Np

∂EF
e

]

δEF
e +

[

∂E

∂VWS

]

Np

[

∂VWS

∂EF
e

]

δEF
e . (A.2.78)

For the first term of this relation we have
[

∂E

∂Np

]

VWS

=

[

∂Ep

∂Np
+

∂En

∂Np
+

∂Ee

∂Np
+

∂Eem

∂Np

]

VWS

≃
[

EF
p − EF

n + EF
e +

∂Eem

∂Np

]

VWS

,

(A.2.79)
where the general definition of chemical potential ∂ǫi/∂ni = ∂Ei/∂Ni is used
(i = e, p, n) neglecting the mass defect mn − mp − me. Further using the
condition of the beta-equilibrium (A.2.33) we have

[

∂E

∂Np

]

VWS

=

[

∂Eem

∂Np

]

VWS

. (A.2.80)

For the second term of the Eq. (A.2.78) we have

[

∂E

∂VWS

]

Np

=

[

∂Ep

∂VWS
+

∂En

∂VWS
+

∂Ee

∂VWS
+

∂Eem

∂VWS

]

Np

=

[

∂Ee

∂VWS

]

Np

+

[

∂Eem

∂VWS

]

Np

,

(A.2.81)
since in the process of increasing the electron Fermi energy namely, by de-
creasing the radius of the Wigner-Seitz cell, the system by definition main-
tains the same number of baryons A and the same core radius Rc.

Now δE reads

δE =

{

[

∂Ee

∂VWS

]

Np

∂VWS

∂EF
e

+

[

∂Eem

∂VWS

]

Np

∂VWS

∂EF
e

+

[

∂Eem

∂Np

]

VWS

∂Np

∂EF
e

}

δEF
e ,

(A.2.82)
so only the electromagnetic energy and the electron energy give non-null con-
tributions.

From this equation it follows that

∆E = ∆Eem + ∆Ee, (A.2.83)

where ∆Eem = Eem(EF
e (I I))−Eem(EF

e (I)) and ∆Ee = Ee(EF
e (I I))−Ee(EF

e (I)).
In the particular case in which EF

e (I I) = (EF
e )max and EF

e (I) = 0 we obtain

∆E ≃ 0.75
35/3

2

(π

4

)1/3 1

∆
√

α

( π

12

)1/6
N2/3

p mπc2, (A.2.84)

which is positive.
The compressional energy of a nuclear matter core of stellar dimensions

increases with its electron Fermi energy as expected.
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A.2.7. Conclusions

The results presented in this article are in the realm of theoretical physics
of nuclear physics and of atomic physics and give special attention to rel-
ativistic effects. They generalize to the relativistic regimes classical results
obtained by Feynman, Metropolis and Teller (Feynman et al., 1949) and, by
the introduction of scaling laws, they generalize the classical results obtained
by Migdal et al. (1976, 1977); Rotondo et al. (2011e) in heavy nuclei to massive
cores of ∼ M⊙. As such they find their justification. They acquire also special
meaning in astrophysics: the considerations contained in Secs. I–IV lead to a
consistent treatment of white dwarfs and the ones in Secs. V and VI lead to a
deeper understanding of neutron star physics.

We have generalized to the relativistic regime the classic work of Feynman,
Metropolis and Teller by solving the relativistic Thomas-Fermi equation in a
Wigner-Seitz cell corresponding to a compressed atom. The integration of
this equation does not admit regular solutions for a point-like nucleus and
both the nuclear radius and the nuclear composition have necessarily to be
taken into account (Ferreirinho et al., 1980; Ruffini and Stella, 1981). This
introduces a fundamental difference from the non-relativistic Thomas-Fermi
model where a point-like nucleus is traditionally adopted.

As in previous works by Ferreirinho et al. (1980), Ruffini and Stella (1981)
and Rotondo et al. (2011e), the protons in the nuclei have been assumed to
be at constant density, the electron distribution has been derived by the rela-
tivistic Thomas-Fermi equation and the neutron component by the beta equi-
librium between neutrons, protons and electrons.

We have examined, for completeness, the relativistic generalization of the
Thomas-Fermi-Dirac equation by taking into due account the exchange terms
(Dirac, 1930), adopting the general approach of Migdal et al. (1977), and
shown that these effects, generally small, can be neglected in the relativis-
tic treatment.

There are marked differences between the relativistic and the non-relativistic
treatments.

The first is that the existence of a finite size nucleus introduces a limit to the
compressibility: the dimension of the Wigner-Seitz cell can never be smaller
then the nuclear size. Consequently the electron Fermi energy which in the
non-relativistic approach can reach arbitrarily large values, reaches in the
present case a perfectly finite value: an expression for this finite value of the
electron Fermi energy has been given in analytic form. There are in the liter-
ature many papers adopting a relativistic treatment for the electrons, with a
point-like approximation for the nucleus, which are clearly inconsistent (see
e.g. Chabrier and Potekhin (1998) and Potekhin et al. (2009)).

The second is the clear difference of the electron distribution as a function
of the radius and of the nuclear composition as contrasted to the uniform
approximation (see Fig. A.8 of Sec. A.2.4), often adopted in the literature (see
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e.g. Bürvenich et al. (2007)). Therefore the validity of inferences based on a
uniform approximation should be duly verified both in the relativistic and in
the non-relativistic regime.

The third is that the relativistic Feynman-Metropolis-Teller treatment al-
lows to treat precisely the electrodynamical interaction within a compressed
atom with all the relativistic corrections. This allows to validate and in some
cases overcome the difficulties of treatments describing the electrodynamical
effect by a sequence of successive approximations. This is the case of vali-
dation of the Salpeter approach at high densities and the overcome of neg-
ative pressures at low densities. The new treatment evidences a softening
of the dependence of the electron Fermi energy on the compression factor,
as well as a gradual decrease of the exchange terms in proceeding from the
non-relativistic to the fully relativistic regimes. It is then possible to derive, as
shown in Table A.1 of Sec. A.2.4, a consistent equation of state for compressed
matter.

The equation of state obtained in Table A.1 of Sec. A.2.4 has been recently
applied to the study of the general relativistic white-dwarf equilibrium con-
figurations by Rotondo et al. (2011b). The contribution of quantum statistics,
weak and electromagnetic interactions here considered have been further
generalized there by considering the contribution of the general relativistic
equilibrium of white dwarf matter. This is expressed by the simple formula√

g00µws =constant, which links the chemical potential of the Wigner-Seitz
cell µws with the general relativistic gravitational potential g00 at each point of
the configuration. The configuration outside each Wigner-Seitz cell is strictly
neutral and therefore no global electric field is necessary to warranty the equi-
librium of the white dwarf. These equations modify the ones used by Chan-
drasekhar by taking into due account the Coulomb interaction between the
nuclei and the electrons as well as inverse beta decay. They also generalize
the work of Salpeter by considering a unified self-consistent approach to the
Coulomb interaction in each Wigner-Seitz cell. The consequences on the nu-
merical value of the Chandrasekhar-Landau mass limit have been then pre-
sented as well as on the mass-radius relation of white dwarfs (Rotondo et al.,
2011b). This leads to the possibility of a direct confrontation of these results
with observations, in view of the current great interest for the cosmological
implications of the type Ia supernovae (Phillips, 1993; Riess et al., 1998; Perl-
mutter et al., 1999; Riess et al., 2004) and in the case of low mass white dwarf
companion of the Pulsar PSRJ1141-6545 (Kramer, 2010) as well as the role of
white dwarfs in novae.

In Secs. V and VI we have then extrapolated these results to the case of
nuclear matter cores of stellar dimensions for A ≈ (mPlanck/mn)3 ∼ 1057 or
Mcore ∼ M⊙. The aim here is to explore the possibility of obtaining for these
systems a self-consistent solution presenting global and not local charge neu-
trality. The results generalize the considerations presented in the previous
article by Rotondo et al. (2011e) corresponding to a nuclear matter core of stel-
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lar dimensions with null Fermi energy of the electrons. The ultra-relativistic
approximation allows to obtain analytic expressions for the fields in the case
of positive electron Fermi energies. An entire family of configurations exist
with values of the Fermi energy of the electrons ranging from zero to a max-
imum value (EF

e )max which is reached when the Wigner- Seitz cell coincides
with the core radius. The configuration with EF

e = (EF
e )max corresponds to

the configuration with Np = Ne and np = ne: for this limiting value of the
Fermi energy the system fulfills both the global and the local charge neutral-
ity and, correspondingly, no electrodynamical structure is present in the core.
The other configurations present generally overcritical electric fields close to
their surface. The configuration with EF

e = 0 has the maximum value of the
electric field at the core surface, well above the critical value Ec (see Fig. A.11,
Fig. A.12 and Fig. A.13 of Section A.2.5). All these cores with overcritical elec-
tric fields are stable against the vacuum polarization process due to the Pauli
blocking by the degenerate electrons (see e.g. Ruffini et al. (2010b)). We have
also compared and contrasted our treatment of the relativistic Thomas-Fermi
solutions to the corresponding one addressed in the framework of strange
stars by Alcock et al. (1986), pointing out in these treatments some inconsis-
tency in the definition of the Coulomb potential. We have finally compared
the compressional energy of configurations with selected values of the elec-
tron Fermi energy.

The above problem is theoretically well defined, represents a necessary
step in order to approach the more complex problem of a neutron star core
and its interface with the neutron star crust.

Neutron stars are composed of two sharply different components: the liq-
uid core at nuclear and/or supra-nuclear density consisting of neutrons, pro-
tons and electrons and a crust of degenerate electrons in a lattice of nuclei
(see e.g. Baym et al. (1971a)) and Harrison et al. (1965)) and possibly of free
neutrons due to neutron drip when this process occurs (see e.g. Baym et al.
(1971a)). Consequently, the boundary conditions for the electrons at the sur-
face of the neutron star core will have generally a positive value of the elec-
tron Fermi energy in order to take into account the compressional effects of
the neutron star crust on the core. The case of zero electron Fermi energy
corresponds to the limiting case of absence of the crust.

In a set of interesting papers Glendenning (1992); Glendenning and Pei
(1995); Christiansen and Glendenning (1997); Glendenning and Schaffner-
Bielich (1999); Christiansen et al. (2000); Glendenning (2001) have relaxed the
local charge neutrality condition for the description of the mixed phases in
hybrid stars. In such configurations the global charge neutrality condition,
as opposed to the local one, is applied to the limited regions where mixed
phases occur while in the pure phases the local charge neutrality condition
still holds. We have generalized Glendenning’s considerations by looking to
a violation of the local charge neutrality condition on the entire configuration,
still keeping its overall charge neutrality. This effect cannot occur locally, and
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requires a global description of the equilibrium configuration. To exempli-
fied this novel approach we have considered in Rotondo et al. (2011d) the
simplest, nontrivial, self-gravitating system of degenerate neutrons, protons
and electrons in beta equilibrium in the framework of relativistic quantum
statistics and the Einstein-Maxwell equations. The impossibility of imposing
the condition of local charge neutrality on such systems is proved in complete
generality. The crucial role of the constancy of the generalized electron Fermi
energy is emphasized and consequently the coupled system of the general
relativistic Thomas-Fermi equations and the Einstein-Maxwell equations is
solved. We then give an explicit solution corresponding to a violation of the
local charge neutrality condition on the entire star, still fulfilling the global
charge neutrality when electromagnetic, weak and general relativistic effects
are taken into account.

The results presented in the second part of this article on nuclear matter
cores of stellar dimensions evidence the possibility of having the existence of
critical electromagnetic fields at the core surface.
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Figure A.8.: The electron number density ne in units of the average electron
number density n0 = 3Ne/(4πR3

WS) is plotted as a function of the dimen-
sionless radial coordinate x = r/λπ for the selected compressions xWS = 9.7
(upper panels), xWS = 3 × 103 (middle panels) and xWS = 104 (bottom pan-
els), in both the relativistic Feynman, Metropolis, Teller approach and the
uniform approximation respectively for helium (panels on the left) and iron
(panels on the right).
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Figure A.9.: The electron Fermi energy EF
e in units of the pion rest energy is

plotted as a function of the average electron density n0 = 3Ne/(4πR3
WS) in

units of the nuclear density nnuc = 3A/(4π∆3Npλ3
π) for a uniform approx-

imation (solid line), compared and contrasted to the ones obtained consid-
ering the relativistic Feynman, Metropolis, Teller approach. The arrow and
the dot indicate the value of the maximum electron Fermi energy as given by
Eq. (A.2.42), consistent with the finite size of the nucleus.
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Figure A.10.: The electron Fermi energies in units of mπc2N4/3
p for helium,

carbon and iron are plotted as a function of the ratio RWS/(λπ N−1/3
p ) re-

spectively in the non-relativistic and in the relativistic Feynman-Metropolis-
Teller (FMT) treatment. The dimensionless quantities have been chosen in
order to obtain an universal curve in the non relativistic treatment following
Eqs. (A.2.10) and (A.2.11). The relativistic treatment leads to results of the
electron Fermi energy dependent on the nuclear composition and system-
atically smaller than the non-relativistic ones. The electron Fermi energy can
attain arbitrary large values, in the non relativistic treatment, as the point-like
nucleus is approached.
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Figure A.11.: The electron Coulomb potential energies in units of the pion
rest energy in a nuclear matter core of stellar dimensions with A ≃ 1057 or
Mcore ∼ M⊙ and Rc ≈ 106 cm, are plotted as a function of the dimension-
less variable ξ, for different values of the electron Fermi energy also in units
of the pion rest energy. The solid line corresponds to the case of null elec-
tron Fermi energy. By increasing the value of the electron Fermi energy the
electron Coulomb potential energy depth is reduced.
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Figure A.12.: Solutions of the ultra-relativistic Thomas-Fermi equation
(A.2.45) for different values of the Wigner-Seitz cell radius RWS and corre-
spondingly of the electron Fermi energy in units of the pion rest energy as in
Fig. A.11, near the core surface. The solid line corresponds to the case of null
electron Fermi energy.
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Figure A.13.: The electric field in units of the critical field for vacuum po-
larization Ec = m2

e c3/(eh̄) is plotted as a function of the coordinate ξ, for
different values of the electron Fermi energy in units of the pion rest energy.
The solid line corresponds to the case of null electron Fermi energy. To an
increase of the value of the electron Fermi energy it is found a reduction of
the peak of the electric field.
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Figure A.14.: The Fermi energy of electrons in units of the pion rest energy is
plotted for different Wigner-Seitz cell dimensions (i.e for different compres-
sions) ξWS in the ultra-relativistic approximation . In the limit ξWS → 0 the
electron Fermi energy approaches asymptotically the value (EF

e )max given by
Eq. (A.2.63).
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A.3. Electrodynamics for Nuclear Matter in Bulk

It is well know that the Thomas-Fermi equation is the exact theory for atoms,
molecules and solids as Z → ∞ (Lieb and Simon, 1973). We show in this
letter that the relativistic Thomas-Fermi theory developed for the study of
atoms for heavy nuclei with Z ≃ 106 Pieper and Greiner (1969); Greenberg
and Greiner (1982); Müller et al. (1972); Popov (1971b); Zeldovich and Popov
(1972); Ferreirinho et al. (1980); Ruffini and Stella (1981); Müller and Rafel-
ski (1975); Migdal et al. (1976) gives important basic new information on the
study of nuclear matter in bulk in the limit of N ≃ (mPlanck/mn)3 nucleons of
mass mn and on its electrodynamic properties. The analysis of nuclear matter
bulk in neutron stars composed of degenerate gas of neutrons, protons and
electrons, has traditionally been approached by implementing microscopi-
cally the charge neutrality condition by requiring the electron density ne(x)
to coincide with the proton density np(x),

ne(x) = np(x). (A.3.1)

It is clear however that especially when conditions close to the gravitational
collapse occur, there is an ultra-relativistic component of degenerate elec-
trons whose confinement requires the existence of very strong electromag-
netic fields, in order to guarantee the overall charge neutrality of the neutron
star. Under these conditions equation (A.3.1) will be necessarily violated. We
are going to show in this letter that they will develop electric fields close to
the critical value Ec introduced by Sauter (1931), Heisenberg and Euler (1936),
and by Schwinger (1951, 1954a,b)

Ec =
m2c3

eh̄
. (A.3.2)

Special attention for the existence of critical electric fields and the possible
condition for electron-positron (e+e−) pair creation out of the vacuum in
the case of heavy bare nuclei, with the atomic number Z ≥ 173, has been
given by Popov (1971b); Zeldovich and Popov (1972); Greenberg and Greiner
(1982); Müller et al. (1972). They analyzed the specific pair creation process
of an electron-positron pair around both a point-like and extended bare nu-
cleus by direct integration of Dirac equation. These considerations have been
extrapolated to much heavier nuclei Z ≫ 1600, implying the creation of a
large number of e+e− pairs, by using a statistical approach based on the rel-
ativistic Thomas-Fermi equation by Müller and Rafelski (1975); Migdal et al.
(1976). Using substantially the same statistical approach based on the rela-
tivistic Thomas-Fermi equation, Ferreirinho et al. (1980); Ruffini and Stella
(1981) have analyzed the electron densities around an extended nucleus in
a neutral atom all the way up to Z ≃ 6000. They have shown the effect
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of penetration of the electron orbitals well inside the nucleus, leading to a
screening of the nuclei positive charge and to the concept of an “effective”
nuclear charge distribution. All the above works assumed for the radius of
the extended nucleus the semi-empirical formulae (Segré, 1977),

Rc ≈ r0A1/3, r0 = 1.2 · 10−13cm, (A.3.3)

where the mass number A = Nn + Np, Nn and Np are the neutron and proton
numbers. The approximate relation between A and the atomic number Z =
Np,

Z ≃ A

2
, (A.3.4)

was adopted in Müller and Rafelski (1975); Migdal et al. (1976), or the empir-
ical formulae

Z ≃ [
2

A
+

3

200

1

A1/3
]−1, (A.3.5)

was adopted in Ferreirinho et al. (1980); Ruffini and Stella (1981).
The aim of this letter is to outline an alternative approach of the description

of nuclear matter in bulk: it generalizes, to the case of N ≃ (mPlanck/mn)3

nucleons, the above treatments, already developed and tested for the study
of heavy nuclei. This more general approach differs in many aspects from the
ones in the current literature and recovers, in the limiting case of A smaller
than 106, the above treatments. We shall look for a solution implementing the
condition of overall charge neutrality of the star as given by

Ne = Np, (A.3.6)

which significantly modifies Eq. (A.3.1), since now Ne(Np) is the total num-
ber of electrons (protons) of the equilibrium configuration. Here we present
only a simplified prototype of this approach. We outline the essential rel-
ative role of the four fundamental interactions present in the neutron star
physics: the gravitational, weak, strong and electromagnetic interactions. In
addition, we also implement the fundamental role of Fermi-Dirac statistics
and the phase space blocking due to the Pauli principle in the degenerate
configuration. The new results essentially depend from the coordinated ac-
tion of the five above theoretical components and cannot be obtained if any
one of them is neglected. Let us first recall the role of gravity. In the case of
neutron stars, unlike in the case of nuclei where its effects can be neglected,
gravitation has the fundamental role of defining the basic parameters of the
equilibrium configuration. As pointed out by Gamow (1931), at a Newtonian
level and by Oppenheimer and Volkoff (1939) in general relativity, configura-
tions of equilibrium exist at approximately one solar mass and at an average
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density around the nuclear density. This result is obtainable considering only
the gravitational interaction of a system of Fermi degenerate self-gravitating
neutrons, neglecting all other particles and interactions. It can be formulated
within a Thomas-Fermi self-gravitating model (see e.g. Ruffini and Bonaz-
zola (1969)). In the present case of our simplified prototype model directed at
evidencing new electrodynamic properties, the role of gravity is simply taken
into account by considering, in line with the generalization of the above re-
sults, a mass-radius relation for the baryonic core

RNS = Rc ≈
h̄

mπc

mPlanck

mn
. (A.3.7)

This formula generalizes the one given by Eq. (A.3.3) extending its validity
to N ≈ (mPlanck/mn)3, leading to a baryonic core radius Rc ≈ 10km. We also
recall that a more detailed analysis of nuclear matter in bulk in neutron stars
( see e.g. Bethe et al. (1970) and Cameron (1970) ) shows that at mass densities
larger than the ”melting” density of

ρc = 4.34 · 1013g/cm3, (A.3.8)

all nuclei disappear. In the description of nuclear matter in bulk we have to
consider then the three Fermi degenerate gas of neutrons, protons and elec-
trons. In turn this naturally leads to consider the role of strong and weak
interactions among the nucleons. In the nucleus, the role of the strong and
weak interaction, with a short range of one Fermi, is to bind the nucleons,
with a binding energy of 8 MeV, in order to balance the Coulomb repulsion
of the protons. In the neutron star case we have seen that the neutrons con-
finement is due to gravity. We still assume that an essential role of the strong
interactions is to balance the effective Coulomb repulsion due to the protons,
partly screened by the electrons distribution inside the neutron star core. We
shall verify, for self-consistency, the validity of this assumption on the final
equilibrium solution we are going to obtain. We now turn to the essential
weak interaction role in establishing the relative balance between neutrons,
protons and electrons via the direct and inverse β-decay

p + e −→ n + νe, (A.3.9)

n −→ p + e + ν̄e. (A.3.10)

Since neutrinos escape from the star and the Fermi energy of the electrons is
null, as we will show below, the only non-vanishing terms in the equilibrium
condition given by the weak interactions are:

√

(PF
n c)2 + M2

nc4 − Mnc2 =
√

(PF
p c)2 + M2

pc4 − Mpc2 + eV
p

coul, (A.3.11)
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where PF
n and PF

p are respectively, the neutron and proton Fermi momenta,

and V
p

coul is the Coulomb potential of protons. At this point, having fixed all
these physical constraints, the main task is to find the electrons distributions
fulfilling in addition to the Dirac-Fermi statistics also the Maxwell equations
for the electrostatic. The condition of equilibrium of the Fermi degenerate
electrons implies the null value of the Fermi energy:

√

(PF
e c)2 + m2c4 − mc2 + eVcoul(r) = 0, (A.3.12)

where PF
e is the electron Fermi momentum and Vcoul(r) the Coulomb poten-

tial. In line with the procedure already followed for the heavy atoms Fer-
reirinho et al. (1980); Ruffini and Stella (1981) we here adopt the relativistic
Thomas-Fermi Equation:

1

x

d2χ(x)

dx2
= −4πα







θ(x − xc)−
1

3π2

[

(

χ(x)

x
+ β

)2

− β2

]3/2






, (A.3.13)

where α = e2/(h̄c), θ(x − xc) represents the normalized proton density dis-
tribution, the variables x and χ are related to the radial coordinate and the
electron Coulomb potential Vcoul by

x =
r

Rc

(

3Np

4π

)1/3

; eVcoul(r) ≡
χ(r)

r
, (A.3.14)

and the constants xc(r = Rc) and β are respectively

xc ≡
(

3Np

4π

)1/3

; β ≡ mcRc

h̄

(

4π

3Np

)1/3

. (A.3.15)

The solution has the boundary conditions

χ(0) = 0; χ(∞) = 0, (A.3.16)

with the continuity of the function χ and its first derivative χ′ at the boundary
of the core Rc. The crucial point is the determination of the eigenvalue of the
first derivative at the center

χ′(0) = const., (A.3.17)

which has to be determined by fulfilling the above boundary conditions (A.3.16)
and constraints given by Eq. (A.3.11) and Eq. (A.3.6). The difficulty of the
integration of the Thomas-Fermi Equations is certainly one of the most cel-
ebrated chapters in theoretical physics and mathematical physics, still chal-
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lenging a proof of the existence and uniqueness of the solution and strenu-
ously avoiding the occurrence of exact analytic solutions. We recall after the
original papers of Thomas (1927) and Fermi (1927), the works of Sommerfeld
(1932), all the way to the many hundredth papers reviewed in the classical ar-
ticles of Lieb and Simon (1973), Lieb (1981) and Spruch (1991). The situation
here is more difficult since we are working on the special relativistic general-
ization of the Thomas-Fermi Equation. Also in this case, therefore, we have
to proceed by numerical integration. The difficulty of this numerical task is
further enhanced by a consistency check in order to fulfill all different con-
straints. It is so that we start the computations by assuming a total number
of protons and a value of the core radius Rc. We integrate the Thomas-Fermi
Equation and we determine the number of neutrons from the Eq. (A.3.11). We
iterate the procedure until a value of A is reached consistent with our choice
of the core radius. The paramount difficulty of the problem is the numerical
determination of the eigenvalue in Eq. (A.3.17) which already for A ≈ 104

had presented remarkable numerical difficulties Ferreirinho et al. (1980). In
the present context we have been faced for a few months by an apparently
unsurmountable numerical task: the determination of the eigenvalue seemed
to necessitate a significant number of decimals in the first derivative (A.3.17)
comparable to the number of the electrons in the problem! The solution is
given in Fig. (A.15) and Fig. (A.16).

A relevant quantity for exploring the physical significance of the solution
is given by the number of electrons within a given radius r:

Ne(r) =
∫ r

0
4π(r′)2ne(r

′)dr′. (A.3.18)

This allows to determine, for selected values of the A parameter, the distri-
bution of the electrons within and outside the core and follow the progres-
sive penetration of the electrons in the core at increasing values of A [ see
Fig. (A.17)]. We can then evaluate, generalizing the results in Ferreirinho
et al. (1980); Ruffini and Stella (1981) , the net charge inside the core

Nnet = Np − Ne(Rc) < Np, (A.3.19)

and consequently determine the electric field at the core surface, as well as
within and outside the core [see Fig. (A.18)] and evaluate as well the Fermi
degenerate electron distribution outside the core [see Fig. (A.19)]. It is inter-
esting to explore the solution of the problem under the same conditions and
constraints imposed by the fundamental interactions and the quantum statis-
tics and imposing instead of Eq. (A.3.1) the corresponding Eq. (A.3.6). Indeed
a solution exist and is much simpler

nn(x) = np(x) = ne(x) = 0, χ = 0. (A.3.20)
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Figure A.15.: The solution χ of the relativistic Thomas-Fermi Equation for
A = 1057 and core radius Rc = 10km, is plotted as a function of radial coor-
dinate. The left red line corresponds to the internal solution and it is plotted
as a function of radial coordinate in unit of Rc in logarithmic scale. The right
blue line corresponds to the solution external to the core and it is plotted as
function of the distance ∆r from the surface in the logarithmic scale in cen-
timeter.
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Figure A.16.: The same as Fig. (A.15): enlargement around the core radius Rc

showing explicitly the continuity of function χ and its derivative χ′ from the
internal to the external solution.

Before concluding as we announce we like to check on the theoretical con-
sistency of the solution. We obtain an overall neutral configuration for the
nuclear matter in bulk, with a positively charged baryonic core with

Nnet = 0.92

(

m

mπ

)2( e

mn

√
G

)2 (1

α

)2

, (A.3.21)

and an electric field on the baryonic core surface (see Fig. (A.18) )

E

Ec
= 0.92. (A.3.22)

The corresponding Coulomb repulsive energy per nucleon is given by

Umax
coul =

1

2α

(

m

mπ

)3

mc2 ≈ 1.78 · 10−6(MeV), (A.3.23)

well below the nucleon binding energy per nucleon. It is also important to
verify that this charge core is gravitationally stable. We have in fact

Q√
GM

= α−1/2

(

m

mπ

)2

≈ 1.56 · 10−4. (A.3.24)
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Figure A.17.: The electron number (A.3.18) in the unit of the total proton
number Np, for selected values of A, is given as function of radial distance
in the unit of the core radius Rc, again in logarithmic scale. It is clear how
by increasing the value of A the penetration of electrons inside the core in-
creases. The detail shown in Fig. (A.18) and Fig. (A.19) demonstrates how for
N ≃ (mPlanck/mn)3 a relatively small tail of electron outside the core exists
and generates on the baryonic core surface an electric field close to the critical
value. A significant electron density outside the core is found.
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The electric field of the baryonic core is screened to infinity by an electron dis-
tribution given in Fig. (A.19). As usual any new solution of Thomas-Fermi
systems has relevance and finds its justification in the theoretical physics
and mathematical physics domain. We expect that as in the other solutions
previously obtained in the literature of the relativistic Thomas-Fermi equa-
tions also this one we present in this letter will find important applications
in physics and astrophysics. There are a variety of new effects that such a
generalized approach naturally leads to: (1) the mass-radius relation of neu-
tron star may be affected; (2) the electrodynamic aspects of neutron stars and
pulsars will be different; (3) we expect also important consequence in the ini-
tial conditions in the physics of gravitational collapse of the baryonic core as
soon as the critical mass for gravitational collapse to a black hole is reached.
The consequent collapse to a black hole will have very different energetics
properties.
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A.4. On the Charge to Mass Ratio of Neutron

Cores and Heavy Nuclei

A.4.1. Introduction

It is well known that stable nuclei are located, in the Nn-Np plane (where
Nn and Np are the total number of neutrons and protons respectively), in a
region that, for small values of Np, is almost a line well described by the rela-
tion Nn = Np.
In the past, several efforts have been made to explain theoretically this prop-
erty, for example with the liquid drop model of atoms, that is based on two
properties common to all nuclei: their mass densities and their binding ener-
gies for nucleons are almost independent from the mass number A = Nn +
Np (Segré, 1977). This model takes into account the strong nuclear force and
the Coulombian repulsion between protons and explains different properties
of nuclei, for example the relation between Np and A (the charge to mass
ratio).

In this work we derive theoretically the charge to mass ratio of nuclei and
extend it to neutron cores (characterized by higher values of A) with the
model of Ruffini et al. (2007c). We consider systems composed of degener-
ate neutrons, protons and electrons and we use the relativistic Thomas-Fermi
equation and the equation of β-equilibrium to determine the number density
and the total number of these particles, from which we obtain the relation
between Np and A.

A.4.2. The theoretical model

Following the work of Ruffini et al. (2007c), we describe nuclei and neu-
tron cores as spherically symmetric systems composed of degenerate protons,
electrons and neutrons and impose the condition of global charge neutrality.
We assume that the proton’s number density np(r) is constant inside the core
(r ≤ RC) and vanishes outside the core (r > RC):

np(r) =

(

3Np

4πR3
C

)

θ(RC − r), (A.4.1)

where Np is the total number of protons and RC is the core-radius, parame-
trized as:

RC = ∆
h̄

mπc
N1/3

p . (A.4.2)

We choose ∆ in order to have ρ ∼ ρN, where ρ and ρN are the mass density of
the system and the nuclear density respectively (ρN = 2.314 · 1014g cm−3).
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The electron number density ne(r) is given by:

ne(r) =
1

3π2h̄3

[

pF
e (r)

]3
, (A.4.3)

where pF
e (r) is the electron Fermi momentum. It can be calculated from the

condition of equilibrium of Fermi degenerate electrons, that implies the null
value of their Fermi energy ǫF

e (r):

ǫF
e (r) =

√

[pF
e (r)c]

2 + m2
e c4 − mec

2 + Vc(r) = 0, (A.4.4)

where Vc(r) is the Coulomb potential energy of electrons.

From this condition we obtain:

pF
e (r) =

1

c

√

V2
c (r)− 2mec2Vc(r), (A.4.5)

hence the electron number density is:

ne(r) =
1

3π2h̄3c3

[

V2
c (r)− 2mec

2Vc(r)
]3/2

. (A.4.6)

The Coulomb potential energy of electrons, necessary to derive ne(r), can be
determined as follows. Based on the Gauss law, Vc(r) obeys the following
Poisson equation:

∇2Vc(r) = −4πe2[ne(r)− np(r)], (A.4.7)

with the boundary conditions Vc(∞) = 0, Vc(0) = f inite. Introducing the
dimensionless function χ(r), defined by the relation:

Vc(r) = −h̄c
χ(r)

r
, (A.4.8)

and the new variable x = rb−1 = r
(

h̄
mπc

)−1
, from Eq. (A.4.7) we obtain the

relativistic Thomas-Fermi equation:

1

3x

d2χ(x)

dx2
= −α

{

1

∆3
θ(xc − x)− 4

9π

[

χ2(x)

x2
+ 2

me

mπ

χ(x)

x

]3/2
}

. (A.4.9)

The boundary conditions for the function χ(x) are:

χ(0) = 0, χ(∞) = 0, (A.4.10)

as well as the continuity of χ(x) and its first derivative χ
′
(x) at the boundary
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of the core.
The number density of neutrons nn(r) is:

nn(r) =
1

3π2h̄3

[

pF
n(r)

]3
, (A.4.11)

where pF
n(r) is the neutron Fermi momentum. It can be calculated with the

condition of equilibrium between the processes

e− + p → n + νe; (A.4.12)

n → p + e− + ν̄e, (A.4.13)

Assuming that neutrinos escape from the core as soon as they are produced,
this condition (condition of β-equilibrium) is

ǫF
e (r) + ǫF

p(r) = ǫF
n(r). (A.4.14)

Eq. (A.4.14) can be explicitly written as:

√

[pF
p(r)c]

2 + m2
pc4 − mpc2 − Vc(r) =

√

[pF
n(r)c]

2 + m2
nc4 − mnc2. (A.4.15)

A.4.3. Np-A relation

Using the previous equations, we derive ne(r), nn(r) and np(r) and, by in-
tegrating these, we obtain the Ne, Nn and Np. We also derive a theoretical
relation between Np and A and we compare it with the data of the Periodic
Table and with the semi-empirical relation:

Np =

(

A

2

)

· 1

1 +
(

3
400

)

· A2/3
(A.4.16)

that, in the limit of low A, gives the well known relation Np = A/2 (Segré,
1977).
Eq. (A.4.16) can be obtained by minimizing the semi-empirical mass formula,
that was first formulated by Weizsäcker in 1935 and is based on empirical
measurements and on theory (the liquid drop model of atoms).
The liquid drop model approximates the nucleus as a sphere composed of
protons and neutrons (and not electrons) and takes into account the Coulom-
bian repulsion between protons and the strong nuclear force. Another im-
portant characteristic of this model is that it is based on the property that the
mass densities of nuclei are approximately the same, independently from A.
In fact, from scattering experiments it was found the following expression for
the nuclear radius RN :

RN = r0A1/3, (A.4.17)
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with r0 = 1.2 fm. Using eq. (A.4.17) the nuclear density can be write as
follows:

ρN =
AmN

V
=

3AmN

4πr3
0 A

=
3mN

4πr3
0

, (A.4.18)

where mN is the nucleon mass. From eq. (A.4.18) it is clear that nuclear
density is indipendent from A, so it is constant for all nuclei.
The property of constant density for all nuclei is a common point with our
model: in fact, we choose ∆ in order to have the same mass density for every
value of A; in particular we consider the case ρ ∼ ρN, as previously said.
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Figure A.20.: The Np − A relation obtained with our model and with the semi-empirical
mass formula, the Np = A/2 relation and the data of the Periodic Table; relations are plotted
for values of A from 0 to 200.

In table (A.2) are listed some values of A obtained with our model and the
semi-empirical mass formula, as well as the data of the Periodic Table; in fig.
(A.20) and (A.21) it is shown the comparison between the various Np − A
relations.

It is clear that there is a good agreement between all the relations for values
of A typical of nuclei, with differences of the order of per cent. Our relation
and the semi-empirical one are in agreement up to A ∼ 104; for higher values,
we find that the two relations differ. We interprete these differences as due to
the effects of penetration of electrons inside the core [see fig. (A.22)]: in our
model we consider a system composed of degenerate protons, neutrons and
electrons. For the smallest values of A, all the electrons are in a shell outside
the core; by increasing A, they progressively penetrate into the core (Ruffini
et al., 2007c). These effects, which need the relativistic approach introduced
in Ruffini et al. (2007c), are not taken into account in the semi-empirical mass
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Figure A.21.: The Np − A relation obtained with our model and with the semi-empirical

mass formula and the Np = A/2 relation; relations are plotted for values of A from 0 to 108.
It is clear how the semi-empirical relation and the one obtained with our model are in good
agreement up to values of A of the order of 104; for greater values of A the two relation differ
because our model takes into account the penetration of electrons inside the core, which is
not considered in the semi-empirical mass formula.
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Figure A.22.: The electron number in units of the total proton number Np as function of
the radial distance in units of the core radius RC, for different values of A. It is clear that, by
increasing the value of A, the penetration of electrons inside the core increases. Figure from
Ruffini et al. (2007c).
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formula.
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Figure A.23.: The Np − A relation obtained with our model and the asymptotic limit Np =
0.026A

We also note that the charge to mass ratio become constant for A greater
that 107; in particular, it is well approximated by the relation Np = 0.026A
[see fig. (A.23)].

A.4.4. Conclusions

In this work we have derived theoretically a relation between the total num-
ber of protons Np and the mass number A for nuclei and neutron cores with
the model recently proposed by Ruffini et al. (2007c)).
We have considered spherically symmetric systems composed of degenerate
electrons, protons and neutrons having global charge neutrality and the same
mass densities (ρ ∼ ρN). By integrating the relativistic Thomas-Fermi equa-
tion and using the equation of β-equilibrium, we have determined the total
number of protons, electrons and neutrons in the system and hence a theo-
retical relation between Np and A.
We have compared this relation with the empirical data of the Periodic Table
and with the semi-empirical relation, obtained by minimizing the Weizsäcker
mass formula by considering systems with the same mass densities. We have
shown that there’s a good agreement between all the relations for values of
A typical of nuclei, with differences of the order of per cent. Our relation and
the semi-empirical one are in agreement up to A ∼ 104; for higher values, we
find that the two relations differ. We interprete the different behaviour of our
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Np AM APT ASE

5 10.40 10.811 10.36
10 21.59 20.183 21.15
15 32.58 30.9738 32.28
20 44.24 40.08 43.72
25 56.17 54.938 55.45
30 68.43 65.37 67.46
50 120.40 118.69 118.05
70 176.78 173.04 172.54
90 237.41 232.038 230.79

110 302.18 271 292.75
150 443.98 427.73
200 644.03 617.56
250 869.32 831.63
300 1119.71 1071.08
350 1395.12 1337.23
450 2019.48 1955.57
500 2367.77 2310.96
550 2739.60 2699.45
600 3134.28 3122.83
103 6.9·103 8·103

104 2.0·105 3.45·106

105 3.0·106 3.38·109

106 3.4·107 3.37·1012

107 3.7·108 3.37·1015

1010 3.9·1011 3.37·1024

Table A.2.: Different values of Np (column 1) and corresponding values of A
from our model (AM, column 2), the Periodic Table (APT, column 3) and the
semi-empirical mass formula (ASE, column 4).
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theoretical relation as a result of the penetration of electrons (initially con-
fined in an external shell) inside the core [see fig.(A.22)], that becomes more
and more important by increasing A; these effects, which need the relativistic
approach introduced in Ruffini et al. (2007c), are not taken into account in the
semi-empirical mass-formula.
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A.5. Supercritical fields on the surface of massive

nuclear cores: neutral core vs. charged core

A.5.1. Equilibrium of electron distribution in neutral cores.

In Ruffini et al. (2007c); Ferreirinho et al. (1980); Ruffini and Stella (1981), the
Thomas-Fermi approach was used to study the electrostatic equilibrium of
electron distributions ne(r) around extended nuclear cores, where total pro-
ton and electron numbers are the same Np = Ne. Proton’s density np(r) is
constant inside core r ≤ Rc and vanishes outside the core r > Rc,

np(r) = npθ(Rc − r), (A.5.1)

where Rc is the core radius and np proton density. Degenerate electron den-
sity,

ne(r) =
1

3π2h̄3
(PF

e )
3, (A.5.2)

where electron Fermi momentum PF
e , Fermi-energy Ee(PF

e ) and Coulomb po-
tential energy Vcoul(r) are related by,

Ee(P
F
e ) = [(PF

e c)2 + m2
e c4]1/2 − mec

2 − Vcoul(r). (A.5.3)

The electrostatic equilibrium of electron distributions is determined by

Ee(P
F
e ) = 0, (A.5.4)

which means the balance of electron’s kinetic and potential energies in Eq. (A.5.3)
and degenerate electrons occupy energy-levels up to +mec2. Eqs. (A.5.2),
(A.5.3), and (A.5.4) give the relationships:

PF
e =

1

c

[

V2
coul(r) + 2mec

2Vcoul(r)
]1/2

; (A.5.5)

ne(r) =
1

3π2(ch̄)3

[

V2
coul(r) + 2mec

2Vcoul(r)
]3/2

. (A.5.6)

The Gauss law leads the following Poisson equation and boundary condi-
tions,

∆Vcoul(r) = 4πα
[

np(r)− ne(r)
]

; Vcoul(∞) = 0, Vcoul(0) = finite.(A.5.7)

These equations describe a Thomas-Fermi model for neutral nuclear cores,
and have numerically solved together with the empirical formula (Ferreir-
inho et al., 1980; Ruffini and Stella, 1981) and β-equilibrium equation (Ruffini
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et al., 2007c) for the proton number Np and mass number A = Np + Nn,
where Nn is the neutron number.

A.5.2. Equilibrium of electron distribution in super charged
cores

In Müller and Rafelski (1975); Migdal et al. (1976), assuming that super charged
cores of proton density (A.5.1) are bare, electrons (positrons) produced by
vacuum polarization fall (fly) into cores (infinity), one studied the equilib-
rium of electron distribution when vacuum polarization process stop. When
the proton density is about nuclear density, super charged core creates a
negative Coulomb potential well −Vcoul(r), whose depth is much more pro-
found than −mec

2 (see Fig. [A.24]), production of electron-positron pairs take
places, and electrons bound by the core and screen down its charge. Since the
phase space of negative energy-levels ǫ(p)

ǫ(p) = [(pc)2 + m2
e c4]1/2 − Vcoul(r), (A.5.8)

below −mec2 for accommodating electrons is limited, vacuum polarization
process completely stops when electrons fully occupy all negative energy-
levels up to −mec

2, even electric field is still critical. Therefore an equilibrium
of degenerate electron distribution is expected when the following condition
is satisfied,

ǫ(p) = [(pc)2 + m2
e c4]1/2 − Vcoul(r) = −mec

2, p = PF
e , (A.5.9)

and Fermi-energy

Ee(P
F
e ) = ǫ(PF

e )− mec
2 = −2mec

2, (A.5.10)

which is rather different from Eq. (A.5.4). This equilibrium condition (A.5.10)
leads to electron’s Fermi-momentum and number-density (A.5.2),

PF
e =

1

c

[

V2
coul(r)− 2mec

2Vcoul(r)
]1/2

; (A.5.11)

ne(r) =
1

3π2(ch̄)3

[

V2
coul(r)− 2mec

2Vcoul(r)
]3/2

. (A.5.12)

which have a different sign contracting to Eqs. (A.5.5,A.5.6). Eq. (A.5.7) re-
mains the same. However, contracting to the neutrality condition Ne = Np

and ne(r)|r→∞ → 0 in the case of neutral cores, the total number of electrons
is given by

Nion
e =

∫ r0

0
4πr2drne(r) < Np, (A.5.13)
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where r0 is the finite radius at which electron distribution ne(r) (A.5.12) van-
ishes: ne(r0) = 0 , i.e., Vcoul(r0) = 2mec

2, and ne(r) ≡ 0 for the range r > r0.
Nion < Np indicates that such configuration is not neutral. These equations
describe a Thomas-Fermi model for super charged cores, and have numeri-
cally (Müller and Rafelski, 1975) and analytically (Migdal et al., 1976) solved
with assumption Np = A/2.

A.5.3. Ultra-relativistic solution

In the analytical approach (Migdal et al., 1976), the ultra-relativistic approxi-
mation is adopted for Vcoul(r) ≫ 2mec

2, the term 2mec
2Vcoul(r) in Eqs. (A.5.5),

(A.5.6), (A.5.11), and (A.5.12) is neglected. It turns out that approximated
Thomas-Fermi equations are the same for both cases of neutral and charged
cores, and solution Vcoul(r) = h̄c(3π2np)1/3φ(x),

φ(x) =







1 − 3
[

1 + 2−1/2 sinh(3.44 −
√

3x)
]−1

, for x < 0,
√

2
(x+1.89)

, for x > 0,







, (A.5.14)

where x = 2(π/3)1/6α1/2n1/3
p (r − Rc) ∼ 0.1(r − Rc)/λπ and the pion Comp-

ton length λπ = h̄/(mπc). At the core center r = 0(x → −∞), Vcoul(0) =
h̄c(3π2np)1/3 ∼ mπc2. On the surface of the core r = Rc, namely x = 0,

and Vcoul(Rc) = (3/4)Vcoul(0) ≫ mec2, indicating that the ultra-relativistic
approximation is applicable for r . Rc. This approximation breaks down
at r & r0. Clearly, it is impossible to determine the value r0 out of ultra-
relativistically approximated equation, and full Thomas-Fermi equation (A.5.7)
with source terms Eq. (A.5.6) for the neutral case, and Eq. (A.5.12) for the
charged case have to be solved.

For r < r0 where Vcoul(r) > 2mec
2, we treat the term 2mec

2Vcoul(r) in
Eqs. (A.5.6,A.5.12) as a small correction term, and find the following inequal-
ity is always true

nneutral
e (r) > n

charged
e (r), r < r0, (A.5.15)

where nneutral
e (r) and n

charged
e (r) stand for electron densities of neutral and

super charged cores. For the range r > r0, n
charged
e (r) ≡ 0 in the case of

super charged core, while nneutral
e (r) → 0 in the case of neutral core, which

should be calculated in non-relativistic approximation: the term V2
coul(r) in

Eq. (A.5.6) is neglected.

In conclusion, the physical scenarios and Thomas-Fermi equations of neu-
tral and super charged cores are slightly different. When the proton den-
sity np of cores is about nuclear density, ultra-relativistic approximation ap-

plies for the Coulomb potential energy Vcoul(r) ≫ mec
2 in 0 < r < r0 and

r0 > Rc, and approximate equations and solutions for electron distributions
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inside and around cores are the same. As relativistic regime r ∼ r0 and non-
relativistic regime r > r0 (only applied to neutral case) are approached, solu-
tions in two cases are somewhat different, and need direct integrations.

-40 -20 20 40
Hr-RcL�H10ΛΠL

-250

-200

-150

-100

-50

V�me

mec2

-mec2

mec2-V

-mec2-V

r0®

Figure A.24.: Potential energy-gap ±mec
2 − Vcoul(r) and electron mass-gap

±mec2 in the unit of mec
2 are plotted as a function of (r − Rc)/(10λπ). The

potential depth inside core (r < Rc) is about pion mass mπc2 ≫ mec
2 and po-

tential energy-gap and electron mass-gap are indicated. The radius r0 where
electron distribution ne(r0) vanishes in super charged core case is indicated
as r0−, since it is out of plotting range.
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A.6. The Extended Nuclear Matter Model with

Smooth Transition Surface

A.6.1. The Relativistic Thomas-Fermi Equation

Let us to introduce the proton distribution function fp(x) by mean of np(x) =
nc

p fp(x), where nc
p is the central number density of protons. We use the di-

mensionless unit x = (r − b)/a, with a−1 =
√

4παλenc
p, λe is the electron

Compton wavelength, b the length where initial conditions are given (x = 0)
and α is the fine structure constant.

Using the Poisson’s equation and the equilibrium condition for the gas of
electrons

Ee
F = mec

2
√

1 + x2
e − mec2 − eV = 0 , (A.6.1)

where e is the fundamental charge, xe the normalized electron Fermi momen-
tum and V the electrostatic potential, we obtain the relativistic Thomas–Fermi
equation

ξ′′e (x) +
(

2

x + b/a

)

ξ′e(x)−
[ξ2

e (x)− 1]3/2

µ
+ fp(x) = 0 , (A.6.2)

where µ = 3π2λ3
e nc

p and we have introduced the normalized electron chem-

ical potential in absence of any field ξe =
√

1 + x2
e . For a given distribution

function fp(x) and a central number density of protons nc
p, the above equa-

tion can be integrated numerically with the boundary conditions

ξe(0) =

√

1 +
[

µ δ fp(0)
]2/3

, ξ′e(0) < 0 , (A.6.3)

where δ ≡ ne(0)/np(0).

A.6.2. The Woods-Saxon-like Proton Distribution Function

We simulate a monotonically decreasing proton distribution function fulfill-
ing a Woods–Saxon dependence

fp(x) =
γ

γ + eβx
, (A.6.4)

where γ > 0 and β > 0. In Fig. A.25 we show the proton distribution function
for a particular set of parameters.
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Figure A.25.: Proton distribution function for γ = 1.5, β ≈ 0.0585749.

A.6.3. Results of the Numerical Integration.

We have integrated numerically the Eq. (A.6.2) for several sets of parameters
and initial conditions. As an example, we show the results for the proton
distribution function shown in Fig. A.25, with nc

p = 1.38 × 1036(cm−3). This

system was integrated with Ne = Np = 1054, mass number A = 1.61 × 1056

and δ ≈ 0.967.
We summarize the principal features of our model in Figs. A.26 and A.27,

where we have plotted the electric field in units of the critical field Ec =
m2

e c3

eh̄ , (me and e are the electron mass and charge), and the normalized charge
separation function

∆(x) =
np(x)− ne(x)

np(0)
. (A.6.5)

We see that the electric field is overcritical but smaller respect to the case of
a sharp step proton distribution used in Ruffini et al. (2007c); Migdal et al.
(1976). We have performed several numerical integrations expanding the
transition surface and confirm the existence of overcritical fields but it is
worth to mention that it could be subcritical expanding the width of the tran-
sition surface several orders of magnitude in electron Compton wavelength
units.

We also see a displacement of the location of the maximum of intensity.
This effect is due to the displacement of the point where ne = np. After this
point, the charge density becomes negative producing an effect of screening
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Figure A.26.: Electric field in units of the critical field Ec.
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Figure A.27.: Charge separation function.
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of the charged core up to global charged neutrality is achieved.
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A.7. Electron-positron pairs production in a

macroscopic charged core

A.7.1. Introduction

Very soon after the Dirac equation for a relativistic electron was discovered
(Dirac, 1928a,b, 1958), Gordon (1928) (for all Z < 137) and Darwin (1928) (for
Z = 1) found its solution in the point-like Coulomb potential V(r) = −Zα/r,
they obtained the well-known Sommerfeld’s formula for energy-spectrum,

E(n, j) = mc2

[

1 +

(

Zα

n − |K|+ (K2 − Z2α2)1/2

)2
]−1/2

, (A.7.1)

where the fine-structure constant α = e2/h̄c, the principle quantum number
n = 1, 2, 3, · · · and

K =

{

−(j + 1/2) = −(l + 1), if j = l + 1
2 , l ≥ 0

(j + 1/2) = l, if j = l − 1
2 , l ≥ 1

(A.7.2)

l = 0, 1, 2, · · · is the orbital angular momentum corresponding to the upper
component of Dirac bi-spinor, j is the total angular momentum. The integer
values n and j label bound states whose energies are E(n, j) ∈ (0, mc2). For
the example, in the case of the lowest energy states, one has

E(1S 1
2
) = mc2

√

1 − (Zα)2 , (A.7.3)

E(2S 1
2
) = E(2P1

2
) = mc2

√

1 +
√

1 − (Zα)2

2
, (A.7.4)

E(2P3
2
) = mc2

√

1 − 1

4
(Zα)2. (A.7.5)

For all states of the discrete spectrum, the binding energy mc2 − E(n, j) in-
creases as the nuclear charge Z increases. No regular solution with n = 1, l =
0, j = 1/2 and K = −1 (the 1S1/2 ground state) is found for Z > 137, this
was first noticed by Gordon in his pioneer paper (Gordon, 1928). This is the
problem so-called “Z = 137 catastrophe”.

The problem was solved (Case, 1950; Werner and Wheeler, 1958; Popov,
1970, 1971b,a) by considering the fact that the nucleus is not point-like and
has an extended charge distribution, and the potential V(r) is not divergent
when r → 0. The Z = 137 catastrophe disappears and the energy-levels
E(n, j) of the bound states 1S, 2P and 2S, · · · smoothly continue to drop to-
ward the negative energy continuum (E− < −mc2), as Z increases to val-
ues larger than 137. The critical values Zcr for E(n, j) = −mc2 were found
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(Werner and Wheeler, 1958; Popov, 1970, 1971b,a; Rafelski et al., 1978; Klein-
ert et al., 2008): Zcr ≃ 173 is a critical value at which the lowest energy-level
of the bound state 1S1/2 encounters the negative energy continuum, while
other bound states 2P1/2, 2S3/2, · · · encounter the negative energy continuum
at Zcr > 173, thus energy-level-crossings and productions of electron and
positron pair takes place, provided these bound states are unoccupied. We
refer the readers to Popov (1970, 1971b,a); Rafelski et al. (1978); Kleinert et al.
(2008) for mathematical and numerical details.

The energetics of this phenomenon can be understood as follow. The energy-
level of the bound state 1S1/2 can be estimated as follow,

E(1S1/2) = mc2 − Ze2

r̄
< −mc2, (A.7.6)

where r̄ is the average radius of the 1S1/2 state’s orbit, and the binding energy
of this state Ze2/r̄ > 2mc2. If this bound state is unoccupied, the bare nucleus
gains a binding energy Ze2/r̄ larger than 2mc2, and becomes unstable against
the production of an electron-positron pair. Assuming this pair-production
occur around the radius r̄, we have energies of electron (ǫ−) and positron
(ǫ+):

ǫ− =
√

(c|p−|)2 + m2c4 − Ze2

r̄
; ǫ+ =

√

(c|p+|)2 + m2c4 +
Ze2

r̄
, (A.7.7)

where p± are electron and positron momenta, and p− = −p+. The total
energy required for a pair production is,

ǫ−+ = ǫ− + ǫ+ = 2
√

(c|p−|)2 + m2c4, (A.7.8)

which is independent of the potential V(r̄). The potential energies ±eV(r̄) of
electron and positron cancel each other and do not contribute to the total en-
ergy (A.7.8) required for pair production. This energy (A.7.8) is acquired from
the binding energy (Ze2/r̄ > 2mc2) by the electron filling into the bound state
1S1/2. A part of the binding energy becomes the kinetic energy of positron
that goes out. This is analogous to the familiar case that a proton (Z = 1)
catches an electron into the ground state 1S1/2, and a photon is emitted with
the energy not less than 13.6 eV.

In this article, we study classical and semi-classical states of electrons, electron-
positron pair production in an electric potential of macroscopic cores with
charge Q = Z|e|, mass M and macroscopic radius Rc.
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A.7.2. Classical description of electrons in potential of cores

Effective potentials for particle’s radial motion

Setting the origin of spherical coordinates (r, θ, φ) at the center of such cores,
we write the vectorial potential Aµ = (A, A0), where A = 0 and A0 is the
Coulomb potential. The motion of a relativistic electron with mass m and
charge e is described by its radial momentum pr, total angular momenta pφ

and the Hamiltonian,

H± = ±mc2

√

1 + (
pr

mc
)2 + (

pφ

mcr
)2 − V(r), (A.7.9)

where the potential energy V(r) = eA0, and ± corresponds for positive
and negative energies. The states corresponding to negative energy solu-
tions are fully occupied. The total angular momentum pφ is conserved, for
the potential V(r) is spherically symmetric. For a given angular momentum
pφ = mv⊥r, where v⊥ is the transverse velocity, the effective potential energy
for electron’s radial motion is

E±(r) = ±mc2

√

1 + (
pφ

mcr
)2 − V(r). (A.7.10)

Outside the core (r ≥ Rc), the Coulomb potential energy V(r) is given by

Vout(r) =
Ze2

r
, (A.7.11)

where ± indicates positive and negative effective energies. Inside the core
(r ≤ Rc), the Coulomb potential energy is given by

Vin(r) =
Ze2

2Rc

[

3 −
(

r

Rc

)2
]

, (A.7.12)

where we postulate the charged core has a uniform charge distribution with
constant charge density ρ = Ze/Vc , and the core volume Vc = 4πR3

c /3.
Coulomb potential energies outside the core (A.7.11) and inside the core (A.7.12)
is continuous at r = Rc. The electric field on the surface of the core,

Es =
Q

R2
c
=

λe

Rc
Ec, β ≡ Ze2

mc2Rc
(A.7.13)

where the electron Compton wavelength λe = h̄/(mc), the critical electric
field Ec = m2c3/(eh̄) and the parameter β is the electric potential-energy on
the surface of the core in unit of the electron mass-energy.
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Stable classical orbits (states) outside the core.

Given different values of total angular momenta pφ, the stable circulating
orbits RL (states) are determined by the minimum of the effective potential
E+(r) (A.7.10) (see Fig. A.28), at which dE+(r)/dr = 0. We obtain stable
orbits locate at the radii RL,

RL =

(

p2
φ

Ze2m

)

√

1 −
(

Ze2

cpφ

)2

, RL ≥ Rc, (A.7.14)

for different pφ-values. Substituting Eq. (A.7.14) into Eq. (A.7.10), we find the
energy of electron at each stable orbit,

E ≡ min(E+) = mc2

√

1 −
(

Ze2

cpφ

)2

. (A.7.15)

For the condition RL & Rc, we have

(

Ze2

cpφ

)2

.
1

2

[

β(4 + β2)1/2 − β2
]

, (A.7.16)

where the semi-equality holds for the last stable orbits outside the core RL →
Rc + 0+. In the point-like case Rc → 0, the last stable orbits are

cpφ → Ze2 + 0+, RL → 0+, E → 0+. (A.7.17)

Eq. (A.7.15) shows that only positive or null energy solutions (states) to exists
in the case of a point-like charge, which is the same as the energy-spectrum
Eqs. (A.7.3,A.7.4,A.7.5) in quantum mechanic scenario. While for pφ ≫ 1,

radii of stable orbits RL ≫ 1 and energies E → mc2 + 0−, classical electrons
in these orbits are critically bound for their banding energy goes to zero. We
conclude that the energies (A.7.15) of stable orbits outside the core must be
smaller than mc2, but larger than zero, E > 0. Therefore, no energy-level
crossing with the negative energy spectrum occurs.

Stable classical orbits inside the core.

We turn to the stable orbits of electrons inside the core. Analogously, using
Eqs. (A.7.10,A.7.12) and dE+(r)/dr = 0, we obtain the stable orbit radius
RL ≤ 1 in the unit of Rc, obeying the following equation,

β2(R8
L + κ2R6

L) = κ4; κ =
pφ

mcRc
. (A.7.18)
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and corresponding to the minimal energy (binding energy) of these states

E =
Ze2

Rc

[

( cpφ

Ze2

)2 1

R4
L

− 1

2
(3 − R2

L)

]

. (A.7.19)

There are 8 solutions to this polynomial equation (A.7.18), only one is physi-
cal solution RL that has to be real, positive and smaller than one. As example,
the numerical solution to Eq. (A.7.18) is RL = 0.793701 for β = 4.4 · 1016 and
κ = 2.2 · 1016. In following, we respectively adopt non-relativistic and ultra-
relativistic approximations to to obtain analytical solutions.

First considering the non-relativistic case for those stable orbit states whose
the kinetic energy term characterized by angular momentum term pφ, see

Eq. (A.7.10), is much smaller than the rest mass term mc2, we obtain the fol-
lowing approximate equation,

β2R8
L ≃ κ4, (A.7.20)

and the solutions for stable orbit radii are,

RL ≃ κ1/2

β1/4
=
( cpφ

Ze2

)1/2
β1/4

< 1, (A.7.21)

and energies,

E ≃
(

1 − 3

2
β +

1

2
κβ1/2

)

mc2. (A.7.22)

The consistent conditions for this solution are β1/2 > κ for RL < 1, and
β ≪ 1 for non-relativistic limit v⊥ ≪ c. As a result, the binding energies
(A.7.22) of these states are mc2 > E > 0, are never less than zero. These
in fact correspond to the stable states which have large radii closing to the
radius Rc of cores and v⊥ ≪ c.

Second considering the ultra-relativistic case for those stable orbit states
whose the kinetic energy term characterized by angular momentum term pφ,

see Eq. (A.7.10), is much larger than the rest mass term mc2, we obtain the
following approximate equation,

β2R6
L ≃ κ2, (A.7.23)

and the solutions for stable orbit radii are,

RL ≃
(

κ

β

)1/3

=
( pφc

Ze2

)1/3
< 1, (A.7.24)

which gives RL ≃ 0.7937007 for the same values of parameters β and κ in
above. The consistent condition for this solution is β > κ ≫ 1 for RL < 1.
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The energy levels of these ultra-relativistic states are,

E ≃ 3

2
β

[

( pφc

Ze2

)2/3
− 1

]

mc2, (A.7.25)

and mc2 > E > −1.5βmc2. The particular solutions E = 0 and E ≃ −mc2 are
respectively given by

( pφc

Ze2

)

≃ 1;
( pφc

Ze2

)

≃
(

1 − 2

3β

)3/2

. (A.7.26)

These in fact correspond to the stable states which have small radii closing to
the center of cores and v⊥ . c.

To have the energy-level crossing to the negative energy continuum, we
are interested in the values β > κ ≫ 1 for which the energy-levels (A.7.25) of
stable orbit states are equal to or less than −mc2,

E ≃ 3

2
β

[

( pφc

Ze2

)2/3
− 1

]

mc2 ≤ −mc2. (A.7.27)

As example, with β = 10 and κ = 2, RL ≃ 0.585, Emin ≃ −9.87mc2. The
lowest energy-level of electron state is pφ/(Ze2) = κ/β → 0 with the binding
energy,

Emin = −3

2
βmc2, (A.7.28)

locating at RL ≃ (pφc/Ze2)1/3 → 0, the bottom of the potential energy Vin(0)
(A.7.12).

A.7.3. Semi-Classical description

Bohr-Sommerfeld quantization

In order to have further understanding, we consider the semi-classical sce-
nario. Introducing the Planck constant h̄ = h/(2π), we adopt the semi-
classical Bohr-Sommerfeld quantization rule

∫

pφdφ ≃ h(l +
1

2
), ⇒ pφ(l) ≃ h̄(l +

1

2
), l = 0, 1, 2, 3, · · ·, (A.7.29)

which are discrete values selected from continuous total angular momentum
pφ in the classical scenario. The variation of total angular momentum ∆pφ =
±h̄ in th unit of the Planck constant h̄. Substitution

( pφc

Ze2

)

⇒
(

2l + 1

2Zα

)

, (A.7.30)

1401



A. Nuclear and Atomic Astrophysics

where the fine-structure constant α = e2/(h̄c), must be performed in classical
solutions that we obtained in section (A.7.2).

1. The radii and energies of stable states outside the core (A.7.14) and
(A.7.15) become:

RL = λ

(

2l + 1

Zα

)

√

1 −
(

2Zα

2l + 1

)2

, (A.7.31)

E = mc2

√

1 −
(

2Zα

2l + 1

)2

, (A.7.32)

where λ is the electron Compton length.

2. The radii and energies of non-relativistic stable states inside the core
(A.7.21) and (A.7.22) become:

RL ≃
(

2l + 1

2Zα

)1/2

β1/4, (A.7.33)

E ≃
(

1 − 3

2
β +

λ(2l + 1)

4Rc
β1/2

)

mc2. (A.7.34)

3. The radii and energies of ultra-relativistic stable states inside the core
(A.7.24) and (A.7.25) become:

RL ≃
(

2l + 1

2Zα

)1/3

, (A.7.35)

E ≃ 3

2
β

[

(

2l + 1

2Zα

)2/3

− 1

]

mc2. (A.7.36)

Note that radii RL in the second and third cases are in unit of Rc.

Stability of semi-classical states

When these semi-classical states are not occupied as required by the Pauli
Principle, the transition from one state to another with different discrete val-
ues of total angular momentum l (l1, l2 and ∆l = l2 − l1 = ±1) undergoes
by emission or absorption of a spin-1 (h̄) photon. Following the energy and
angular-momentum conservations, photon emitted or absorbed in the transi-
tion have angular momenta pφ(l2) − pφ(l1) = h̄(l2 − l1) = ±h̄ and energy
E(l2) − E(l1). In this transition of stable states, the variation of radius is
∆RL = RL(l2)− RL(l1).

We first consider the stability of semi-classical states against such transition
in the case of point-like charge, i.e., Eqs. (A.7.31,A.7.32) with l = 0, 1, 2, · · ·. As
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required by the Heisenberg indeterminacy principle ∆φ∆pφ ≃ 4πpφ(l) & h,
the absolute ground state for minimal energy and angular momentum is

given by the l = 0 state, pφ ∼ h̄/2, RL ∼ λ(Zα)−1
√

1 − (2Zα)2 > 0 and

E ∼ mc2
√

1 − (2Zα)2 > 0, which corresponds to the last stable orbit (A.7.17)
in the classical scenario. Thus the stability of all semi-classical states l > 0
is guaranteed by the Pauli principle. This is only case for Zα ≤ 1/2. While
for Zα > 1/2, there is not an absolute ground state in the semi-classical sce-
nario. This can be understood by examining how the lowest energy states
are selected by the quantization rule in the semi-classical scenario out of the
last stable orbits (A.7.17) in the classical scenario. For the case of Zα ≤ 1/2,
equating pφ in Eq. (A.7.17) to pφ = h̄(l + 1/2) (A.7.29), we find the selected
state l = 0 is only possible solution so that the ground state l = 0 in the semi-
classical scenario corresponds to the last stable orbits (A.7.17) in the classical
scenario. While for the case of Zα > 1/2, equating pφ in Eq. (A.7.17) to
pφ = h̄(l + 1/2) (A.7.29), we find the selected semi-classical state

l̃ =
Zα − 1

2
> 0, (A.7.37)

in the semi-classical scenario corresponds to the last stable orbits (A.7.17) in
the classical scenario. This state l = l̃ > 0 is not protected by the Heisenberg
indeterminacy principle from quantum-mechanically decaying in h̄-steps to
the states with lower angular momenta and energies (correspondingly smaller
radius RL (A.7.31)) via photon emissions. This clearly shows that the “Z =
137-catastrophe” corresponds to RL → 0, falling to the center of the Coulomb
potential and all semi-classical states (l) are unstable.

Then we consider the stability of semi-classical states against such transi-
tion in the case of charged cores Rc 6= 0. Substituting pφ in Eq. (A.7.29) into

Eq. (A.7.16), we obtain the selected semi-classical state l̃ corresponding to the
last stable orbit outside the core,

l̃ =
√

2

(

Rc

λ

)

[

(

4Rc

Zαλ
+ 1

)1/2

− 1

]−1/2

≈ (Zα)1/4

(

Rc

λ

)3/4

> 0. (A.7.38)

Analogously to Eq. (A.7.37), the same argument concludes the instability of
this semi-classical state, which must quantum-mechanically decay to states
with angular momentum l < l̃ inside the core, provided these semi-classical
states are not occupied. This conclusion is independent of Zα-value.

We go on to examine the stability of semi-classical states inside the core. In
the non-relativistic case (1 ≫ β > κ2), the last classical stable orbits locate
at RL → 0 and pφ → 0 given by Eqs. (A.7.21,A.7.22), corresponding to the

lowest semi-classical state (A.7.33,A.7.34) with l = 0 and energy mc2 > E > 0.
In the ultra-relativistic case (β > κ ≫ 1), the last classical stable orbits locate
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at RL → 0 and pφ → 0 given by Eqs. (A.7.24,A.7.25), corresponding to the
lowest semi-classical state (A.7.35,A.7.36) with l = 0 and minimal energy,

E ≃ 3

2
β

[

(

1

2Zα

)2/3

− 1

]

mc2 ≈ −3

2
βmc2. (A.7.39)

This concludes that the l = 0 semi-classical state inside the core is an absolute
ground state in both non- and ultra-relativistic cases. The Pauli principle
assure that all semi-classical states l > 0 are stable, provided all these states
accommodate electrons. The electrons can be either present inside the neutral
core or produced from the vacuum polarization, later will be discussed in
details.

We are particular interested in the ultra-relativistic case β > κ ≫ 1, i.e.,
Zα ≫ 1, the energy-levels of semi-classical states can be profound than −mc2

(E < −mc2), energy-level crossings and pair-productions occur if these states
are unoccupied, as discussed in introductory section. It is even more im-
portant to mention that neutral cores like neutron stars of proton number
Z ∼ 1052, the Thomas-Fermi approach has to be adopted to find the con-
figuration of electrons in these semi-classical states, which has the depth of
energy-levels E ∼ −mπc2 to accommodate electrons and a supercritical elec-
tric field (E > Ec) on the surface of the core (Ruffini et al., 2007c).

A.7.4. Production of electron-positron pair

When the energy-levels of semi-classical (bound) states E ≤ −mc2 (A.7.27),
energy-level crossings between these energy-levels (A.7.25) and negative en-
ergy continuum (A.7.10) for pr = 0, as shown in Fig. A.29. The energy-level-
crossing indicates that E (A.7.25) and E− (A.7.10) are equal,

E = E−, (A.7.40)

where angular momenta pφ in E (A.7.36) and E− (A.7.10) are the same for
angular-momentum conservation. The production of electron-positron pairs
must takes place, provided these semi-classical (bound) states are unoccu-
pied. The phenomenon of pair production can be understood as a quantum-
mechanical tunneling process of relativistic electrons. The energy-levels E

of semi-classical (bound) states are given by Eq. (A.7.36) or (A.7.27). The
probability amplitude for this process can be evaluated by a semi-classical
calculation using WKB method (Kleinert et al., 2008):

WWKB(|p⊥|) ≡ exp

{

−2

h̄

∫ Rn

Rb

prdr

}

, (A.7.41)

1404



A.7. Electron-positron pairs production in a macroscopic charged core

where |p⊥| = pφ/r is transverse momenta and the radial momentum,

pr(r) =
√

(c|p⊥|)2 + m2c4 − [E+ V(r)]2. (A.7.42)

The energy potential V(r) is either given by Vout(r) (A.7.11) for r > Rc, or
Vin(r) (A.7.12) for r < Rc. The limits of integration (A.7.41): Rb = RL <

Rc (A.7.24) or (A.7.35) indicating the location of the classical orbit (classical
turning point) of semi-classical (bound) state; while another classical turning
point Rn is determined by setting pr(r) = 0 in Eq. (A.7.42). There are two
cases: Rn < Rc and Rn > Rc, depending on β and κ values.

To obtain a maximal WKB-probability amplitude (A.7.41) of pair produc-
tion, we only consider the case that the charge core is bare and

• the lowest energy-levels of semi-classical (bound) states: pφ/(Ze2) =
κ/β → 0, the location of classical orbit(A.7.24) RL = Rb → 0 and energy
(A.7.25) E → Emin = −3βmc2/2 (A.7.28);

• another classical turning point Rn ≤ Rc, since the probability is expo-
nentially suppressed by a large tunneling length ∆ = Rn − Rb.

In this case (Rn ≤ Rc), Eq. (A.7.42) becomes

pr =
√

(c|p⊥|)2 + m2c4

√

1 − β2m2c4

4[(c|p⊥|)2 + m2c4]

(

r

Rc

)4

, (A.7.43)

and pr = 0 leads to

Rn

Rc
=

(

2

βmc2

)1/2

[(c|p⊥|)2 + m2c4]1/4. (A.7.44)

Using Eqs. (A.7.41,A.7.43,A.7.44), we have

WWKB(|p⊥|) = exp

{

−23/2[(c|p⊥|)2 + m2c4]3/4Rc

ch̄(mc2β)1/2

∫ 1

0

√

1 − x4dx

}

= exp

{

−0.87
23/2[(c|p⊥|)2 + m2c4]3/4Rc

ch̄(mc2β)1/2

}

. (A.7.45)

Dividing this probability amplitude by the tunneling length ∆ ≃ Rn and time
interval ∆t ≃ 2h̄π/(2mc2) in which the quantum tunneling occurs, and inte-
grating over two spin states and the transverse phase-space 2

∫

dr⊥dp⊥/(2πh̄)2,
we approximately obtain the rate of pair-production per the unit of time and
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volume,

ΓNS ≡ d4N

dtd3x
≃ 1.15

6π2

(

Zα

τR3
c

)

exp

{

− 2.46

(Zα)1/2

(

Rc

λ

)3/2
}

, (A.7.46)

=
1.15

6π2

(

β

τλR2
c

)

exp

{

−2.46Rc

β1/2λ

}

, (A.7.47)

=
1.15

6π2

(

1

τλ2Rc

)(

Es

Ec

)

exp

{

−2.46

(

Rc

λ

)1/2 (Ec

Es

)1/2
}

,

(A.7.48)

where Es = Ze/R2
c being the electric field on the surface of the core and the

Compton time τ = h̄/mc2.

To have the size of this pair-production rate, we compare it with the Sauter-
Euler-Heisenberg-Schwinger rate of pair-production in a constant field E (Heisen-
berg and Euler, 1936; Sauter, 1931; Schwinger, 1951, 1954a,b),

ΓS ≡ d4N

dtd3x
≃ 1

4π3τλ3

(

E

Ec

)2

exp

{

−π
Ec

E

}

. (A.7.49)

When the parameter β ≃ (Rc/λ)2, Eq. (A.7.47) becomes

ΓNS ≡ d4N

dtd3x
≃ 1.15

6π2

(

1

τλ3

)

exp {−2.46} = 1.66 · 10−3/(τλ3), (A.7.50)

which is close to the Sauter-Euler-Heisenberg-Schwinger rate (A.7.49) ΓS ≃
3.5 · 10−4/(τλ3) at E ≃ Ec. Taking a neutron star with core mass M = M⊙
and radius Rc = 10km, we have Rc/λ = 2.59 · 1016 and β = 3.86 · 10−17Zα,
leading to Z ≃ 2.4 · 1051 and the electric field on the core surface Es/Ec =
Zα(λ/Rc)2 ≃ 2.6 · 1016. In this case, the charge-mass radio Q/(G1/2 M) =
2 · 10−6|e|/(G1/2mp) = 2.2 · 1012, where where G is the Newton constant and

proton’s charge-mass radio |e|/(G1/2mp) = 1.1 · 1018.

Let us consider another case that the electric field on the core surface Es

(A.7.13) is about the critical field (Es ≃ Ec). In this case, Z = α−1(Rc/λ)2 ≃
9.2 · 1034, β = Zαλ/Rc = Rc/λ ≃ 2.59 · 1016, and the rate (A.7.47) becomes

ΓNS ≡ d4N

dtd3x
≃ 1.15

6π2

(

1

τλ3

)(

λ

Rc

)

exp

{

−2.46

(

Rc

λ

)}

, (A.7.51)

which is exponentially smaller than Eq. (A.7.50) for Rc ≫ λ. In this case, the
charge-mass radio Q/(G1/2 M) = 8.46 · 10−5.
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A.7.5. Summary and remarks

In this letter, analogously to the study in atomic physics with large atomic
number Z, we study the classical and semi-classical (bound) states of elec-
trons in the electric potential of a massive and charged core, which has a uni-
form charge distribution and macroscopic radius. We have found negative
energy states of electrons inside the core, whose energies can be smaller than
−mc2, and the appearance of energy-level crossing to the negative energy
spectrum. As results, quantum tunneling takes place, leading to electron-
positron pairs production, electrons then occupy these semi-classical (bound)
states and positrons are repelled to infinity. Assuming that massive charged
cores are bare and non of these semi-classical (bound) states are occupied, we
analytically obtain the maximal rate of electron-positron pair production in
terms of core’s radius, charge and mass, and we compare it with the Sauter-
Euler-Heisenberg-Schwinger rate of pair-production in a constant field.

Any electron occupations of these semi-classical (bound) states must screen
core’s charge and the massive core is no longer bare. The electric potential po-
tential inside the core is changed. For the core consists of a large number of
electrons, the Thomas-Fermi approach has to be adopted. We recently study
(Ruffini et al., 2007c) the electron distribution inside and outside the massive
core, i.e., the distribution of electrons occupying stable states of the massive
core, and find the electric field on the surface of the massive core is overcriti-
cal.
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Figure A.28.: In the case of point-like charge distribution, we plot the pos-
itive and negative effective potential energies E± (A.7.10), pφ/(mcRc) = 2

and Ze2 = 1.95mc2Rc, to illustrate the radial location RL (A.7.14) of stable
orbits where E+ has a minimum (A.7.15). All stable orbits are described by
cpφ > Ze2. The last stable orbits are given by cpφ → Ze2 + 0+, whose radial
location RL → 0 and energy E → 0+. There is no any stable orbit with energy
E < 0 and the energy-level crossing with the negative energy spectrum E− is
impossible.
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Figure A.29.: For the core κ = 2 and β = 6, we plot the positive and nega-
tive effective potentials E± (A.7.10) , in order to illustrate the radial location
(A.7.24) RL < Rc of stable orbit, where E+’s minimum (A.7.25) E < mc2 is.
All stable orbits inside the core are described by β > κ > 1. The last stable or-
bit is given by κ/β → 0, whose radial location RL → 0 and energy E → Emin

(A.7.28). We indicate that the energy-level crossing between bound state (sta-
ble orbit) energy at RL = Rb and negative energy spectrum E− (A.7.25) at the
turning point Rn.

1409



A. Nuclear and Atomic Astrophysics

A.8. On Magnetic Fields in Rotating Nuclear

Matter Cores of Stellar Dimensions

A.8.1. Introduction

Neutron stars are mainly detected as pulsars, whose regular pulsations in the
radio, X-ray, and optical bands are produced by constant, ordered magnetic
fields that are the strongest known in the Universe. However the origin of
the magnetic field in the neutron stars is not fully understood, so far. Never-
theless in the literature one may find various hypotheses explaining the for-
mation of the magnetic field (Ginzburg, 1964; Woltjer, 1964; Ruderman, 1972,
1995; Reisenegger, 2001, 2007; Reisenegger et al., 2007). The simplest hypoth-
esis to explain the presence of the strong fields observed in neutron stars is
the conservation of the magnetic flux already present in the progenitor stars
during the gravitational collapse. This idea is based on the assumption that
all stars at all stages of their evolution have some magnetic field, due to elec-
tronic currents circulating in their interiors. Thus this argument led to the pre-
diction of the fields B ≈ 1012 G in neutron stars a few years before the discov-
ery of pulsars (Ginzburg, 1964; Woltjer, 1964). However, there is no detailed
physical picture of such a flux conserving collapse. Thompson and Dun-
can (1993) put forward the hypothesis that newborn neutron stars are likely
to combine vigorous convection and differential rotation making a dynamo
process operate in them. They predicted fields up to 1015 − 1016 G in neu-
tron stars with few millisecond initial periods, and suggested that such fields
could explain much of the phenomenology associated with Soft Gamma Re-
peaters and Anomalous X-ray Pulsars (Thompson and Duncan, 1995, 1996).

Probably, these processes are not mutually exclusive. A strong field might
be present in the collapsing star, but later be deformed and perhaps ampli-
fied by some combination of convection, differential rotation, and magnetic
instabilities (Tayler, 1973; Spruit, 2002). The relative importance of these in-
gredients depends on the initial field strength and rotation rate of the star.
For both mechanisms, the field and its supporting currents are not likely to
be confined to the solid crust of the star, but distributed inmost of the stellar
interior, which is mostly a fluid mixture of neutrons, protons, electrons, and
other, more exotic particles.

Unlike aforementioned hypotheses which are based on the assumptions
that all stars are magnetized or charged with some net charge different from
zero, we explore the system recently considered by Ruffini et al. (2007c). Ac-
cording to that work the system consisting of degenerate neutrons, protons
and electrons in beta equilibrium is globally neutral and expected to be kept
at nuclear density by self gravity. In what follows these systems are termed
as Nuclear Matter Cores of Stellar Dimensions. Despite the global neutrality
the charge distribution turned out to be different from zero inside and out-
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side (near the surface) the star. The magnitude of the net charge inside and
outside the core is equal, but the sign is opposite. Such an effect takes place
as a consequence of the beta equilibrium, the penetration of electrons into the
core, hence the screening of the core charge and global charge neutrality. As a
result of this effect, one may show the presence of an electric field close to the
critical value Ec = m2

e c3/eh̄ near the surface of the massive cores, although
localized in a very narrow shell. Thus in this case the magnetic field of the
neutron star may be generated only if it spins like pulsars, even though the
progenitor star has not been magnetized or electrically charged.

A.8.2. The Relativistic Thomas-Fermi equation

The Thomas-Fermi equation is the exact theory for atoms, molecules and
solids as Z → ∞ (Lieb and Simon, 1973). The relativistic Thomas-Fermi the-
ory developed for the study of atoms for heavy nuclei with Z = 106 (Ferreir-
inho et al., 1980; Ruffini and Stella, 1981) gives important basic new informa-
tion on the study of nuclear matter in bulk in the limit of A = (mPlanck/mn)3

nucleons of mass mn and on its electrodynamic properties. The analysis of
nuclear matter bulk in neutron stars composed of degenerate gas of neutrons,
protons and electrons, has traditionally been approached by implementing
microscopically the charge neutrality condition by requiring the electron den-
sity ne(r) to coincide with the proton density np(r),

ne(r) = np(r). (A.8.1)

It is clear however that especially when conditions close to the gravitational
collapse occur, there is an ultra-relativistic component of degenerate elec-
trons whose confinement requires the existence of very strong electromag-
netic fields, in order to guarantee the overall charge neutrality of the neutron
star. Under these conditions equation (A.8.1) will be necessarily violated.

Using substantially a statistical approach based on the relativistic Thomas-
Fermi equation, Ferreirinho et al. (1980); Ruffini and Stella (1981) have ana-
lyzed the electron densities around an extended nucleus in a neutral atom all
the way up to Z = 6000. They have shown the effect of penetration of the
electron orbital well inside the nucleus, leading to a screening of the nuclei
positive charge and to the concept of an “effective” nuclear charge distribu-
tion.

In the work of Ruffini et al. (2007c) and Rotondo et al. (2011e) the rela-
tivistic Thomas-Fermi equation has been used to extrapolate the treatment of
super heavy nuclei to the case of nuclear matter cores of stellar dimensions.
These cores represent the inner part of neutron stars and are characterized by
an atomic number of order of A = (mPlanck/mn)3 ≈ 1057, composed of de-
generate Nn neutrons, Np protons and Ne electrons in beta equilibrium and
expected to be kept at nuclear density by self gravity. It has been shown that
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near the surface of the massive cores it is possible to have an electric field
close to the critical value Ec, although localized in a very narrow shell of the
order of the λe electron Compton wavelength. Now let us review the main
assumptions and results of those works.

According to Ruffini et al. (2007c) and Rotondo et al. (2011e) the protons
are distributed at constant density np within a radius

Rc = ∆
h̄

mπc
N1/3

p , A9 (A.8.2)

where ∆ is a parameter such that ∆ ≈ 1 (∆ < 1) corresponds to nuclear
(supranuclear) densities when applied to ordinary nuclei. The overall Cou-
lomb potential satisfies the Poisson equation

∇2V(r) = −4πe
[

np(r)− ne(r)
]

, (A.8.3)

with the boundary conditions V(∞) = 0 (due to the global charge neutrality
of the system) and finiteness of V(0). The density ne(r) of the electrons of
charge −e is determined by the Fermi energy condition on their Fermi mo-
mentum PF

e ; we assume here

EF
e = [(PF

e c)2 + m2
e c4]1/2 − mec

2 − eV(r) = 0 , (A.8.4)

which leads to

ne(r) =
(PF

e )
3

3π2h̄3
=

1

3π2h̄3c3

[

e2V2(r) + 2mec
2eV(r)

]3/2
. (A.8.5)

Introducing the dimensionless quantities x = r/[h̄/mπc], xc = Rc/[h̄/mπc]
and χ/r = eV(r)/ch̄, the relativistic Thomas-Fermi equation takes the form

1

3x

d2χ(x)

dx2
= − α

∆3
H(xc − x) +

4α

9π

[

χ2(x)

x2
+ 2

me

mπ

χ

x

]3/2

, (A.8.6)

where α = e2/(h̄c) is the fine structure constant, H(xc − x) is the Heaviside
step function and the boundary conditions for χ(x) are χ(0) = 0, χ(∞) = 0.
The neutron density nn(r) is determined by the Fermi energy condition on
their Fermi momentum PF

n imposed by beta decay equilibrium

EF
n = [(PF

n c)2 + m2
nc4]1/2 − mnc2 = [(PF

p c)2 + m2
pc4]1/2 − mpc2 + eV,(A.8.7)

which in turn is related to the proton and electron densities by Eqs. (A.8.3),
(A.8.5) and (A.8.6).

1412



A.8. On Magnetic Fields in Rotating Nuclear Matter Cores of Stellar
Dimensions

A.8.3. The ultra-relativistic analytic solutions

In the ultrarelativistic limit with the planar approximation the relativistic
Thomas-Fermi equation admits an analytic solution. Introducing the new
function φ defined by φ = 41/3(9π)−1/3∆χ/x and the new variables x̂ =

(12/π)1/6 √α∆−1x, ξ = x̂ − x̂c, where x̂c = (12/π)1/6 √α∆−1xc, Eq. (A.8.6)
becomes

d2φ̂(ξ)

dξ2
= −H(−ξ) + φ̂(ξ)3, (A.8.8)

where φ̂(ξ) = φ(ξ + x̂c). The boundary conditions on φ̂ are: φ̂(ξ) → 1 as
ξ → −x̂c ≪ 0 (at the nuclear matter core center) and φ̂(ξ) → 0 as ξ → ∞.
The function φ̂ and its first derivative φ̂′ must be continuous at the surface
ξ = 0 of the nuclear matter core of stellar dimensions. Hence equation (A.8.8)
admits an exact solution

φ̂(ξ) =











1 − 3
[

1 + 2−1/2 sinh(a −
√

3ξ)
]−1

, ξ < 0,√
2

(ξ + b)
, ξ > 0 ,

(A.8.9)

where the integration constants a and b have the values a = arccosh(9
√

3) ≈
3.439, b = (4/3)

√
2 ≈ 1.886. Next we evaluate the Coulomb potential func-

tion

V(ξ) =

(

9π

4

)1/3 mπc2

∆e
φ̂(ξ), (A.8.10)

and by differentiation, the electric field

E(ξ) = −
(

35π

4

)1/6 √
α

∆2

m2
πc3

eh̄
φ̂′(ξ) . (A.8.11)

Details are given in Figs. A.30 and A.31.

A.8.4. Rotating Nuclear Matter Cores of Stellar Dimensions
in Classical Electrodynamics

In section A.8.2 and A.8.3 we have seen that in the massive nuclear density
cores the electric charge distribution is different from zero, although it is glob-
ally neutral. In this section we investigate the case when this charge distri-
bution is allowed to rotate with the constant angular velocity Ω around the
axis of symmetry. Thus the magnetic field of the resultant current density is
calculated in terms of the charge distribution.
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Figure A.30.: The electron Coulomb
potential energy eV, in units of pion
mass mπ is plotted as a function of
the radial coordinate ξ = x̂ − x̂c,
for selected values of the density pa-
rameter ∆.

Figure A.31.: The electric field is
plotted in units of the critical field
Ec as a function of the radial coordi-
nate ξ, showing a sharp peak at the
core radius, for selected values of ∆.

Consider a charge distribution moving in a such way that at every point in
space the charge density and the current density remain constant. In this case
the magnetic field is defined by

B(r) = ∇× A(r), A(r) = (Ω/c2)× F(r), F(r) =
1

4π

∫

r′ρ(r′)d3r′

|r − r′| ,

(A.8.12)
where A is the vector potential of the magnetic field, F(r) is the ”superpoten-
tial” in general form. In the case of spherical symmetry, F(r) may be taken as
radial (see Marsh (1982)). Writing F(r) = erF(r), where er is the unit radial
vector, one has

F(r) =
1

r2

∫ r

0
r′2

d

dr′
[r′V(r′)]dr′. (A.8.13)

This expression allows to calculate the magnetic field due to rotation of any
spherically symmetric distribution of charge in terms of its electrostatic Coulomb
potential. Note that in fact due to rotation the shape of the neutron star must
deviate from spherical symmetry. Since we are interested in the estimation of
the order of the magnetic field the distortions to the shape of the star can be
neglected for simplicity. Thus the magnetic field is defined by

B(r) = Brer + Bθeθ , Br =
2Ω

c2

F

r
cos θ, Bθ = −2Ω

c2

[

F

r
+

r

2

d

dr

(

F

r

)]

sin θ,

(A.8.14)
where Br is the radial component and Bθ is the angular component of the
magnetic field, θ is the angle between r and z axis, and eθ is the unit vector
along θ. Consequently the expression for the magnitude (the absolute value)
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of the magnetic field can be written as

B(r, θ) =
Ωr

c2

√

√

√

√

(

2F

r2

)2

+

{

4F

r2

d

dr

(

F

r

)

+

[

d

dr

(

F

r

)]2
}

sin2 θ. (A.8.15)

Using the relation between r and ξ

r = Rc +
( π

12

)1/6 ∆√
α

h̄

mπc
ξ, (A.8.16)

one may estimate the value of the magnetic field. In Figs. A.32, A.33, A.34
and A.35 details are given.
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Figure A.32.: The radial component
of the magnetic field is plotted as
a function of the radial coordinate
ξ in units of the critical field Bc =
m2

e c3/eh̄ ≈ 4.5 × 1013 G. Here the
period is taken to be P = 10 ms,
θ = 0, ∆ = 1 and the radius of the
core Rc = 10 km. Note that Br is con-
sidered at the poles of star, where
it has maximum value. Outside the
star Br has very small negative value
and it tends to zero. Because of visu-
alization difficulties it is not seen in
the figure.

Figure A.33.: The angular compo-
nent of the magnetic field is plot-
ted in units of the Bc. Here P =
10 ms, θ = π/2, ∆ = 1 and Rc =
10 km. Note that Bθ is considered
at the equator, where it has maxi-
mum value. Inside the star it has
very small constant negative value.
Outside the star first it becomes neg-
ative (the value is very small) then it
tends to zero. Because of scale prob-
lems this behavior is not seen from
the figure.

Examining the Fig. A.32 one can see very small value of Br which almost
does not make a significant contribution to the magnitude of the field, except
for the poles of the star. On the contrary, Bθ Fig. A.33 has values exceeding
the critical magnetic field near the surface of the core although localized in a
narrow region between positively and negatively charged shells as expected.
Outside the core the magnetic field becomes negative. The magnitude of the
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Figure A.34.: The magnitude of the
magnetic field is plotted as a func-
tion of the period of the star P in
the units of the critical field Bc at the
surface of the core Rc = 10 km on
the equator in the logarithmic scale.

Figure A.35.: The magnetic lines of
forces. Outside the star the mag-
netic field looks like a dipole field.
Extra lines along the surface of the
star indicate overcritical value of the
field between positively and nega-
tively charged shells.

field has very small and eventually vanishing values. This effect can not be
seen from the figures, because of visualization difficulties.

In Fig. A.34 the magnitude of the magnetic field is presented as a function
of the rotational period P on the surface of the core at the equator. Practically
it demonstrates the upper limit of possible values of the magnetic field in
the range between 1ms and 100s. Fig. A.35 represents magnetic lines of force
inside, outside and on the surface of the star. It turned out that the lines
of force of the overcritical magnetic field are oppressed between two shells
along the surface of the core.

A.8.5. Conclusions

In this paper we have investigated the behavior of the magnetic field induced
due to rotation on the basis of the research works considered in Ruffini et al.
(2007c) and Rotondo et al. (2011e) using the technique developed by Marsh
(1982).

For this purpose considering a rotating neutron star with the period of
10 ms we have obtained the magnetic field of order of the critical field near
the surface of the star and analyzed the magnetic lines of forces.

According to our results the magnetic fields of the neutron stars could be
generated due to the rotation of the star as a whole rigid body. We believe that
the generation of the magnetic field due to the rotation is the reason for the
formation of the constant magnetic fields at the initial moments of neutron
stars birth.

The problem of investigating the magnetic field in general relativity for a
self-gravitating system of degenerate fermions in beta equilibrium is beyond
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the scope of the present work. We expect to investigate this problem in the
nearest future.
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B. White Dwarfs Physics and
Astrophysics

B.1. The relativistic Feynman-Metropolis-Teller

theory for white dwarfs in general relativity

B.1.1. Introduction

The necessity of introducing the Fermi-Dirac statistics in order to overcome
some conceptual difficulties in explaining the existence of white dwarfs lead-
ing to the concept of degenerate stars was first advanced by (Fowler, 1926)
in a classic paper. Following that work, Stoner (1929) introduced the effect of
special relativity into the Fowler considerations and he discovered the critical
mass of white dwarfs

MStoner
crit =

15

16

√
5π

M3
Pl

µ2m2
n
≈ 3.72

M3
Pl

µ2m2
n

, (B.1.1)

where MPl =
√

h̄c/G ≈ 10−5 g is the Planck mass, mn is the neutron mass,
and µ = A/Z ≈ 2 is the average molecular weight of matter which shows
explicitly the dependence of the critical mass on the chemical composition of
the star.

Following the Stoner’s work, Chandrasekhar (1931b) pointed out the rel-
evance of describing white dwarfs by using an approach, initiated by Milne
(1930), of using the mathematical method of the solutions of the Lane-Emden
polytropic equations (Emden, 1907). The same idea of using the Lane-Emden
equations taking into account the special relativistic effects to the equilibrium
of stellar matter for a degenerate system of fermions, came independently to
Landau (1932). Both the Chandrasekhar and Landau treatments were explicit
in pointing out the existence of the critical mass

MCh−L
crit = 2.015

√
3π

2

M3
Pl

µ2m2
n
≈ 3.09

M3
Pl

µ2m2
n

, (B.1.2)

where the first numerical factor on the right hand side of Eq. (B.1.2) comes
from the boundary condition −(r2du/dr)r=R = 2.015 (see last entry of Table
7 on Pag. 80 in Emden (1907)) of the n = 3 Lane-Emden polytropic equation.
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Namely for M > MCh−L
crit , no equilibrium configuration should exist.

Some of the basic assumptions adopted by Chandrasekhar and Landau in
their idealized approach e.g. the treatment of the electron as a free-gas with-
out taking into due account the electromagnetic interactions, as well as the
stability of the distribution of the nuclei against the gravitational interaction
led to some criticisms by Eddington (1935). It was unfortunate that the ab-
sence of interest of E. Fermi on the final evolution of stars did not allow Fermi
himself to intervene in these well-posed theoretical problems (Boccaletti and
Ruffini, 2010). Indeed, we are showing in this article how the solution of the
conceptual problems of the white dwarf models, left open for years, can be
duly addressed by considering the relativistic Thomas-Fermi model of the
compressed atom (see Subsec. B.1.2 and Sec. B.1.4).

The original work on white dwarfs was motivated by astrophysics and
found in astrophysics strong observational support. The issue of the equi-
librium of the electron gas and the associated component of nuclei, taking
into account the electromagnetic, the gravitational and the weak interactions
is a theoretical physics problem, not yet formulated in a correct special and
general relativistic context.

One of the earliest alternative approaches to the Chandrasekhar-Landau
work was proposed by Salpeter (1961). He followed an idea originally pro-
posed by Frenkel (1928): to adopt in the study of white dwarfs the concept
of a Wigner-Seitz cell. Salpeter introduced to the lattice model of a point-like
nucleus surrounded by a uniform cloud of electrons, corrections due to the
non-uniformity of the electron distribution (see Subsec. B.1.2 for details). In
this way Salpeter (1961) obtained an analytic formula for the total energy in
a Wigner-Seitz cell and derived the corresponding equation of state of matter
composed by such cells, pointing out explicitly the relevance of the Coulomb
interaction.

The consequences of the Coulomb interactions in the determination of the
mass and radius of white dwarfs, was studied in a subsequent paper by
Hamada and Salpeter (1961) by using the equation of state constructed in
Salpeter (1961). They found that the critical mass of white dwarfs depends
in a nontrivial way on the specific nuclear composition: the critical mass of
Chandrasekhar-Landau which depends only on the mass to charge ratio of
nuclei A/Z, now depends also on the proton number Z.

This fact can be seen from the approximate expression for the critical mass
of white dwarfs obtained by Hamada and Salpeter (1961) in the ultrarelativis-
tic limit for the electrons

MH&S
crit = 2.015

√
3π

2

1

µ2
eff

M3
Pl

m2
n

, (B.1.3)
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where

µeff = µ

(

PS

PCh

)−3/4

, (B.1.4)

being PS the pressure of the Wigner-Seitz cell obtained by Salpeter (1961) (see
Subsec. B.1.2) and PCh is the pressure of a free-electron fluid used by Chan-
drasekhar (see Subsec. B.1.2). The ratio PS/PCh is a function of the number of
protons Z (see Eq. (20) in Salpeter (1961)) and it satisfies PS/PCh < 1. Con-
sequently, the effective molecular weight satisfies µeff > µ and the critical
mass of white dwarfs turns to be smaller than the original one obtained by
Chandrasekhar-Landau (see Eq. (B.1.2)).

In the mean time, the problem of the equilibrium gas in a white dwarf
taking into account possible global electromagnetic interactions between the
nucleus and the electrons was addressed by Olson and Bailyn (1975, 1976).
They well summarized the status of the problem: Traditional models for the
white dwarf are non-relativistic and electrically neutral. Although an elec-
tric field is needed to support the pressureless nuclei against gravitational
collapse, the star is treated essentially in terms of only one charge compo-
nent, where charge neutrality is assumed. Their solution to the problem in-
vokes the breakdown of the local charge neutrality and the presence of an
overall electric field as a consequence of treating also the nuclei inside the
white dwarf as a fluid. They treated the white dwarf matter through a two-
fluid model not enforcing local charge neutrality. The closure equation for the
Einstein-Maxwell system of equations was there obtained from a minimiza-
tion procedure of the mass-energy of the configuration. This work was the
first pointing out the relevance of the Einstein-Maxwell equations in the de-
scription of an astrophysical system by requiring global and non local charge
neutrality. As we will show here, this interesting approach does not apply to
the case of white dwarfs. It represents, however, a new development in the
study of neutron stars (see e.g. Rotondo et al. (2011d))

An alternative approach to the Salpeter treatment of a compressed atom
was reconsidered in gur (2000) by applying for the first time to white dwarfs
a relativistic Thomas-Fermi treatment of the compressed atom introducing a
finite size nucleus within a phenomenological description (see also Bertone
and Ruffini (2000)).

Recently, the study of a compressed atom has been revisited in Rotondo
et al. (2011c) by extending the global approach of Feynman et al. (1949) tak-
ing into account weak interactions. This treatment takes also into account all
the Coulomb contributions duly expressed relativistically without the need
of any piecewise description. The relativistic Thomas-Fermi model has been
solved by imposing in addition to the electromagnetic interaction also the
weak equilibrium between neutrons, protons and electrons self-consistently.
This presents some conceptual differences with respect to previous approaches
and can be used in order both to validate and to establish their limitations.
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In this article we apply the considerations presented in Rotondo et al. (2011c)
of a compressed atom in a Wigner-Seitz cell to the description of non-rotating
white dwarfs in general relativity. This approach improves all previous treat-
ments in the following aspects:

1. In order to warranty self-consistency with a relativistic treatment of the
electrons, the point-like assumption of the nucleus is abandoned intro-
ducing a finite sized nucleus (Rotondo et al., 2011c). We assume for the
mass as well as for charge to mass ratio of the nucleus their experimen-
tal values instead of using phenomenological descriptions based on the
semi-empirical mass-formula of Weizsacker (see e.g. gur (2000); Bertone
and Ruffini (2000)).

2. The electron-electron and electron-nucleus Coulomb interaction energy
is calculated without any approximation by solving numerically the
relativistic Thomas-Fermi equation for selected energy-densities of the
system and for each given nuclear composition.

3. The energy-density of the system is calculated taking into account the
contributions of the nuclei, of the Coulomb interactions as well as of
the relativistic electrons; the latter being neglected in all previous treat-
ments. This particular contribution turns to be very important at high-
densities and in particular for light nuclear compositions e.g. 4He and
12C.

4. The β-equilibrium between neutrons, protons, and electrons is also taken
into account leading to a self-consistent calculation of the threshold
density for triggering the inverse β-decay of a given nucleus.

5. The structure of the white dwarf configurations is obtained by integrat-
ing the general relativity equations of equilibrium.

6. Due to 4) and 5) we are able to determine if the instability point leading
to a maximum stable mass of the non-rotating white dwarf is induced
by the inverse β-decay instability of the composing nuclei or by general
relativistic effects.

Paradoxically, after all this procedure which takes into account many ad-
ditional theoretical features generalizing the Chandrasekhar-Landau and the
Hamada and Salpeter works, a most simple equation is found to be fulfilled
by the equilibrium configuration in a spherically symmetric metric. Assum-
ing the metric

ds2 = eν(r)c2dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2 , (B.1.5)

we demonstrate how the entire system of equations describing the equilib-
rium of white dwarfs, taking into account the weak, the electromagnetic and
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the gravitational interactions as well as quantum statistics all expressed con-
sistently in a general relativistic approach, is simply given by

√
g00µws = eν(r)/2µws(r) = constant , (B.1.6)

which links the chemical potential of the Wigner-Seitz cell µws, duly solved
by considering the relativistic Feynman-Metropolis-Teller model following
Rotondo et al. (2011c), to the general relativistic gravitational potential at each
point of the configuration. The overall system outside each Wigner-Seitz cell
is strictly neutral and no global electric field exists, contrary to the results
reported in Olson and Bailyn (1976). The same procedure will apply as well
to the case of neutron star crusts.

The article is organized as follows. In Sec. B.1.2 we summarize the most
common approaches used for the description of white dwarfs and neutron
star crusts: the uniform approximation for the electron fluid (see e.g. Chan-
drasekhar (1931b)); the often called lattice model assuming a point-like nu-
cleus surrounded by a uniform electron cloud (see e.g. Baym et al. (1971b));
the generalization of the lattice model due to Salpeter (1961); the Feynman,
Metropolis and Teller approach (Feynman et al., 1949) based on the the non-
relativistic Thomas-Fermi model of compressed atoms and, the relativistic
generalization of the Feynman-Metropolis-Teller treatment recently formu-
lated in Rotondo et al. (2011c).

In Sec. B.1.3 we formulate the general relativistic equations of equilibrium
of the system and show how, from the self-consistent definition of chemical
potential of the Wigner-Seitz cell and the Einstein equations, comes the equi-
librium condition given by Eq. (B.1.6). In addition, we obtain the Newtonian
and the first-order post-Newtonian equations of equilibrium.

Finally, we show in Sec. B.1.4 the new results of the numerical integration
of the general relativistic equations of equilibrium and discuss the corrections
to the Stoner critical mass MStoner

crit , to the Chandrasekhar-Landau mass limit

MCh−L
crit , as well as to the one of Hamada and Salpeter MH&S

crit , obtained when
all interactions are fully taken into account through the relativistic Feynman-
Metropolis-Teller equation of state (Rotondo et al., 2011c).

B.1.2. The Equation of State

There exists a large variety of approaches to model the equation of state of
white dwarf matter, each one characterized by a different way of treating or
neglecting the Coulomb interaction inside each Wigner-Seitz cell, which we
will briefly review here. Particular attention is given to the calculation of the
self-consistent chemical potential of the Wigner-Seitz cell µws, which plays
a very important role in the conservation law (B.1.6) that we will derive in
Sec. B.1.3.
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The uniform approximation

In the uniform approximation used by Chandrasekhar (1931b), the electron
distribution as well as the nucleons are assumed to be locally constant and
therefore the condition of local charge neutrality

ne =
Z

Ar
nN , (B.1.7)

where Ar is the average atomic weight of the nucleus, is applied. Here nN

denotes the nucleon number density and Z is the number of protons of the
nucleus. The electrons are considered as a fully degenerate free-gas and then
described by Fermi-Dirac statistics. Thus, their number density ne is related
to the electron Fermi-momentum PF

e by

ne =
(PF

e )
3

3π2h̄3
, (B.1.8)

and the total electron energy-density and electron pressure are given by

Ee =
2

(2πh̄)3

∫ PF
e

0

√

c2p2 + m2
e c44πp2dp

=
m4

e c5

8π2h̄3
[xe

√

1 + x2
e (1 + 2x2

e )− arcsinh(xe)] , (B.1.9)

Pe =
1

3

2

(2πh̄)3

∫ PF
e

0

c2p2

√

c2p2 + m2
e c4

4πp2dp

=
m4

e c5

8π2h̄3
[xe

√

1 + x2
e (2x2

e /3 − 1)

+ arcsinh(xe)] , (B.1.10)

where we have introduced the dimensionless Fermi momentum xe = PF
e /(mec)

with me the electron rest-mass.

The kinetic energy of nucleons is neglected and therefore the pressure is
assumed to be only due to electrons. Thus the equation of state can be written
as

Eunif = EN + Ee ≈
Ar

Z
Muc2ne + Ee , (B.1.11)

Punif ≈ Pe , (B.1.12)

where Mu = 1.6604 × 10−24 g is the unified atomic mass and Ee and Pe are
given by Eqs. (B.1.9)–(B.1.10).

Within this approximation, the total self-consistent chemical potential is
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given by
µunif = Ar Muc2 + Zµe , (B.1.13)

where

µe =
Ee + Pe

ne
=
√

c2(PF
e )

2 + m2
e c4 , (B.1.14)

is the electron free-chemical potential.

As a consequence of this effective approach which does not take into any
account the Coulomb interaction, it is obtained an effective one-component
electron-nucleon fluid approach where the kinetic pressure is given by elec-
trons of mass me and their gravitational contribution is given by an effec-
tive mass (Ar/Z)Mu attached to each electron (see e.g. Landau and Lifshitz
(1980)). This is even more evident when the electron contribution to the
energy-density in Eq. (B.1.11) is neglected and therefore the energy-density
is attributed only to the nuclei. Within this approach followed by Chan-
drasekhar (1931b), the equation of state reduces to

ECh =
Ar

Z
Muc2ne , (B.1.15)

PCh = Punif = Pe . (B.1.16)

The lattice model

The first correction to the above uniform model, corresponds to abandon
the assumption of the electron-nucleon fluid through the so-called “lattice”
model which introduces the concept of Wigner-Seitz cell: each cell contains a
point-like nucleus of charge +Ze with A nucleons surrounded by a uniformly
distributed cloud of Z fully-degenerate electrons. The global neutrality of the
cell is guaranteed by the condition

Z = Vwsne =
ne

nws
, (B.1.17)

where nws = 1/Vws is the Wigner-Seitz cell density and Vws = 4πR3
ws/3 is

the cell volume.

The total energy of the Wigner-Seitz cell is modified by the inclusion of the
Coulomb energy, i.e

EL = EunifVws + EC , (B.1.18)

being

EC = Ee−N + Ee−e = − 9

10

Z2e2

Rws
, (B.1.19)

where Eunif is given by Eq. (B.1.11) and Ee−N and Ee−e are the electron-nucleus
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and the electron-electron Coulomb energies

Ee−N = −
∫ Rws

0
4πr2

(

Ze

r

)

enedr

= −3

2

Z2e2

Rws
, (B.1.20)

Ee−e =
3

5

Z2e2

Rws
. (B.1.21)

The self-consistent pressure of the Wigner-Seitz cell is then given by

PL = − ∂EL

∂Vws
= Punif +

1

3

EC

Vws
, (B.1.22)

where Punif is given by Eq. (B.1.12). It is worth to recall that the point-like
assumption of the nucleus is incompatible with a relativistic treatment of
the degenerate electron fluid (see Ferreirinho et al. (1980); Ruffini and Stella
(1981) for details). Such an inconsistency has been traditionally ignored by
applying, within a point-like nucleus model, the relativistic formulas (B.1.9)
and (B.1.10) and their corresponding ultrarelativistic limits (see e.g. Salpeter
(1961)).

The Wigner-Seitz cell chemical potential is in this case

µL = EL + PLVws = µunif +
4

3
EC . (B.1.23)

By comparing Eqs. (B.1.12) and (B.1.22) we can see that the inclusion of the
Coulomb interaction results in a decreasing of the pressure of the cell due
to the negative lattice energy EC. The same conclusion is achieved for the
chemical potential from Eqs. (B.1.13) and (B.1.23).

Salpeter approach

A further development to the lattice model came from Salpeter (1961) whom
studied the corrections due to the non-uniformity of the electron distribution
inside a Wigner-Seitz cell.

Following the Chandrasekhar (1931b) approximation, Salpeter also neglects
the electron contribution to the energy-density. Thus, the first term in the
Salpeter formula for the energy of the cell comes from the nuclei energy
(B.1.15). The second contribution is given by the Coulomb energy of the lat-
tice model (B.1.19). The third contribution is obtained as follows: the electron
density is assumed as ne[1 + ǫ(r)], where ne = 3Z/(4πR3

ws) is the average
electron density as given by Eq. (B.1.17), and ǫ(r) is considered infinitesi-
mal. The Coulomb potential energy is assumed to be the one of the point-like
nucleus surrounded by a uniform distribution of electrons, so the correction
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given by ǫ(r) on the Coulomb potential is neglected. The electron distribution
is then calculated at first-order by expanding the relativistic electron kinetic
energy

ǫk =
√

[cPF
e (r)]

2 + m2
e c4 − mec

2

=

√

h̄2c2(3π2ne)2/3[1 + ǫ(r)]2/3 + m2
e c4

− mec
2, (B.1.24)

about its value in the uniform approximation

ǫunif
k =

√

h̄2c2(3π2ne)2/3 + m2
e c4 − mec

2 , (B.1.25)

considering as infinitesimal the ratio eV/EF
e between the Coulomb potential

energy eV and the electron Fermi energy

EF
e =

√

[cPF
e (r)]

2 + m2
e c4 − mec

2 − eV . (B.1.26)

The influence of the Dirac electron-exchange correction (Dirac, 1930) on the
equation of state was also considered by Salpeter (1961). However, adopting
the general approach of Migdal et al. (1977), it has been shown that these
effects are negligible in the relativistic regime (Rotondo et al., 2011c). We will
then consider here only the major correction of the Salpeter treatment.

The total energy of the Wigner-Seitz cell is then given by (see Salpeter
(1961) for details)

ES = ECh + EC + ETF
S , (B.1.27)

being

ETF
S = −162

175

(

4

9π

)2/3

α2Z7/3µe , (B.1.28)

where ECh = EChVws, EC is given by Eq. (B.1.19), µe is given by Eq. (B.1.14),
and α = e2/(h̄c) is the fine structure constant.

Correspondingly, the self-consistent pressure of the Wigner-Seitz cell is

PS = PL + PS
TF , (B.1.29)

where

PS
TF =

1

3

(

PF
e

µe

)2
ETF

S

Vws
. (B.1.30)
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The Wigner-Seitz cell chemical potential can be then written as

µS = µL + ES
TF

[

1 +
1

3

(

PF
e

µe

)2
]

. (B.1.31)

From Eqs. (B.1.29) and (B.1.31), we see that the inclusion of each additional
Coulomb correction results in a further decreasing of the pressure and of the
chemical potential of the cell. The Salpeter approach is very interesting in
identifying piecewise Coulomb contribution to the total energy, to the total
pressure and, to the Wigner-Seitz chemical potential. However, it does not
have the full consistency of the global solutions obtained with the Feynman-
Metropolis-Teller approach (Feynman et al., 1949) and its generalization to
relativistic regimes (Rotondo et al., 2011c) which we will discuss in detail
below.

The Feynman-Metropolis-Teller treatment

Feynman et al. (1949) showed how to derive the equation of state of matter at
high pressures by considering a Thomas-Fermi model confined in a Wigner-
Seitz cell of radius Rws.

The Thomas-Fermi equilibrium condition for degenerate non-relativistic
electrons in the cell is expressed by

EF
e =

(PF
e )

2

2me
− eV = constant > 0 , (B.1.32)

where V denotes the Coulomb potential and EF
e denotes the Fermi energy of

electrons, which is positive for configurations subjected to external pressure,
namely, for compressed cells.

Defining the function φ(r) by eV(r)+ EF
e = e2Zφ(r)/r, and introducing the

dimensionless radial coordinate η by r = bη, where b = (3π)2/3(λe/α)2−7/3Z−1/3,
being λe = h̄/(mec) the electron Compton wavelength; the Poisson equation
from which the Coulomb potential V is calculated self-consistently becomes

d2φ(η)

dη2
=

φ(η)3/2

η1/2
. (B.1.33)

The boundary conditions for Eq. (B.1.33) follow from the point-like structure
of the nucleus φ(0) = 1 and, from the global neutrality of the Wigner-Seitz
cell φ(η0) = η0dφ/dη|η=η0 , where η0 defines the dimensionless radius of the
Wigner-Seitz cell by η0 = Rws/b.

For each value of the compression, e.g. η0, it corresponds a value of the
electron Fermi energy EF

e and a different solution of Eq. (B.1.33), which de-
termines the self-consistent Coulomb potential energy eV as well as the self-
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consistent electron distribution inside the cell through

ne(η) =
Z

4πb3

[

φ(η)

η

]3/2

. (B.1.34)

In the non-relativistic Thomas-Fermi model, the total energy of the Wigner-
Seitz cell is given by (see Slater and Krutter (1935); Feynman et al. (1949) for
details)

Ews = EN + E
(e)
k + EC , (B.1.35)

being

EN = MN(Z, A)c2 , (B.1.36)

E
(e)
k =

∫ Rws

0
4πr2

Ee[ne(r)]dr

=
3

7

Z2e2

b

[

4

5
η1/2

0 φ5/2(η0)− φ′(0)
]

, (B.1.37)

EC = Ee−N + Ee−e

= −6

7

Z2e2

b

[

1

3
η1/2

0 φ5/2(η0)− φ′(0)
]

, (B.1.38)

where MN(Z, A) is the nucleus mass, Ee[ne(r)] is given by Eq. (B.1.9) and
Ee−N and Ee−e are the electron-nucleus Coulomb energy and the electron-
electron Coulomb energy, which are given by

Ee−N = −
∫ Rws

0
4πr2

(

Ze

r

)

ene(r)dr , (B.1.39)

Ee−e =
1

2

∫ Rws

0
4πr2ene(~r)dr

×
∫ Rws

0
4πr′2

ene(~r′)
|~r −~r′|dr′ . (B.1.40)

From Eqs. (B.1.37) and (B.1.38) we recover the well-known relation between
the total kinetic energy and the total Coulomb energy in the Thomas-Fermi
model (Slater and Krutter, 1935; Feynman et al., 1949)

E
(e)
k = Eunif

k [ne(Rws)]−
1

2
EC , (B.1.41)

where Eunif
k [ne(Rws)] is the non-relativistic kinetic energy of a uniform elec-

tron distribution of density ne(Rws), i.e.

Eunif
k [ne(Rws)] =

3

5
Z∗µe(Rws) , (B.1.42)
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with Z∗ defined by
Z∗ = Vwsne(Rws) , (B.1.43)

and µe(Rws) = h̄2[3π2ne(Rws)]
2/3/(2me).

The self-consistent pressure of the Wigner-Seitz cell given by the non-relativistic
Thomas-Fermi model is (see Slater and Krutter (1935); Feynman et al. (1949)
for details)

PTF =
2

3

Eunif
k [ne(Rws)]

Vws
. (B.1.44)

The pressure of the Thomas-Fermi model (B.1.44) is equal to the pressure
of a free-electron distribution of density ne(Rws). Being the electron density
inside the cell a decreasing function of the distance from the nucleus, the
electron density at the cell boundary, ne(Rws), is smaller than the average
electron distribution 3Z/(4πR3

ws). Then, the pressure given by (B.1.44) is
smaller than the one given by the non-relativistic version of Eq. (B.1.10) of the
uniform model of Subsec. B.1.2. Such a smaller pressure, although faintfully
given by the expression of a free-electron gas, contains in a self-consistent
fashion all the Coulomb effects inside the Wigner-Seitz cell.

The chemical potential of the Wigner-Seitz cell of the non-relativistic Thomas-
Fermi model can be then written as

µTF = MN(Z, A)c2 + Z∗µe(Rws) +
1

2
EC , (B.1.45)

where we have used Eqs. (B.1.41)–(B.1.43).

Integrating by parts the total number of electrons

Z =
∫ Rws

0
4πr2ne(r)dr = Z∗ + I(Rws) , (B.1.46)

where

I(Rws) =
∫ Rws

0

4π

3
r3 ∂ne(r)

∂r
dr , (B.1.47)

we can rewrite finally the following semi-analytical expression of the chemi-
cal potential (B.1.45) of the cell

µTF = MN(Z, A)c2 + Zµunif
e

[

1 +
I(Rws)

Z

]2/3

+ µunif
e I(Rws)

[

1 +
I(Rws)

Z

]2/3

+
1

2
EC , (B.1.48)

where µunif
e is the electron free-chemical potential (B.1.14) calculated with the

average electron density, namely, the electron chemical potential of the uni-
form approximation. The function I(Rws) depends explicitly on the gradient
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of the electron density, i.e. on the non-uniformity of the electron distribution.

In the limit of absence of Coulomb interaction both the last term and the
function I(Rws) in Eq. (B.1.48) vanish and therefore in this limit µTF reduces
to

µTF → µunif , (B.1.49)

where µunif is the chemical potential in the uniform approximation given by
Eq. (B.1.13).

The relativistic Feynman-Metropolis-Teller treatment

We recall now how the above classic Feynman, Metropolis, and Teller treat-
ment of compressed atoms has been recently generalized to relativistic regimes
(see Rotondo et al. (2011c) for details). One of the main differences in the rel-
ativistic generalization of the Thomas-Fermi equation is that, the point-like
approximation of the nucleus, must be abandoned since the relativistic equi-
librium condition of compressed atoms

EF
e =

√

c2(PF
e )

2 + m2
e c4 − mec

2 − eV(r) = constant > 0 , (B.1.50)

would lead to a non-integrable expression for the electron density near the
origin (see e.g.Ferreirinho et al. (1980); Ruffini and Stella (1981)).

It is then assumed a constant distribution of protons confined in a radius
Rc defined by

Rc = ∆λπ Z1/3 , (B.1.51)

where λπ = h̄/(mπc) is the pion Compton wavelength. If the system is at
nuclear density ∆ ≈ (r0/λπ)(A/Z)1/3 with r0 ≈ 1.2 fm. Thus, in the case of
ordinary nuclei (i.e., for A/Z ≈ 2) we have ∆ ≈ 1. Consequently, the proton
density can be written as

np(r) =
Z

4
3πR3

c

θ(r − Rc) =
3

4π

(

1

∆λπ

)3

θ(r − Rc) , (B.1.52)

where θ(r − Rc) denotes the Heaviside function centered at Rc. The electron
density can be written as

ne(r) =
(PF

e )
3

3π2h̄3
=

1

3π2h̄3c3

[

V̂2(r) + 2mec
2V̂(r)

]3/2
, (B.1.53)

where V̂ = eV + EF
e and we have used Eq. (B.1.50).

The overall Coulomb potential satisfies the Poisson equation

∇2V(r) = −4πe
[

np(r)− ne(r)
]

, (B.1.54)
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with the boundary conditions dV/dr|r=Rws = 0 and V(Rws) = 0 due to the
global charge neutrality of the cell.

By introducing the dimensionless quantities x = r/λπ , xc = Rc/λπ , χ/r =
V̂(r)/(h̄c) and replacing the particle densities (B.1.52) and (B.1.53) into the
Poisson equation (B.1.54), it is obtained the relativistic Thomas-Fermi equa-
tion (Ruffini, 2008b)

1

3x

d2χ(x)

dx2
= − α

∆3
θ(xc − x)

+
4α

9π

[

χ2(x)

x2
+ 2

me

mπ

χ(x)

x

]3/2

, (B.1.55)

which must be integrated subjected to the boundary conditions χ(0) = 0,
χ(xws) ≥ 0 and dχ/dx|x=xws = χ(xws)/xws, where xws = Rws/λπ .

The neutron density nn(r), related to the neutron Fermi momentum PF
n =

(3π2h̄3nn)1/3, is determined by imposing the condition of beta equilibrium

EF
n =

√

c2(PF
n )

2 + m2
nc4 − mnc2 =

√

c2(PF
p )

2 + m2
pc4

− mpc2 + eV(r) + EF
e , (B.1.56)

subjected to the baryon number conservation equation

A =
∫ Rc

0
4πr2[np(r) + nn(r)]dr . (B.1.57)

In Fig. B.1 we see how the relativistic generalization of the Feynman-Metropolis-
Teller treatment leads to electron density distributions markedly different
from the constant electron density approximation. The electron distribution
is far from being uniform as a result of the solution of Eq. (B.1.55), which
takes into account the electromagnetic interaction between electrons and be-
tween the electrons and the finite sized nucleus. Additional details are given
in Rotondo et al. (2011c).

Rotondo et al. (2011e) have shown how the solution of the relativistic Thomas-
Fermi equation (B.1.55) together with the self-consistent implementation of
the β-equilibrium condition (B.1.56) leads, in the case of zero electron Fermi
energy (EF

e = 0), to a theoretical prediction of the β-equilibrium line, namely
a theoretical Z-A relation. Within this model the mass to charge ratio A/Z of
nuclei is overestimated, e.g. in the case of 4He the overestimate is ∼ 3.8%, for
12C ∼ 7.9%, for 16O ∼ 9.52%, and for 56Fe ∼ 13.2%. These discrepancies are
corrected when the model of the nucleus considered above is improved by
explicitly including the effects of strong interactions. This model, however,
illustrates how a self-consistent calculation of compressed nuclear matter can
be done including electromagnetic, weak, strong as well as special relativis-
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Figure B.1.: The electron number density ne in units of the average electron
number density n0 = 3Z/(4πR3

ws) inside a Wigner-Seitz cell of 12C. The di-
mensionless radial coordinate is x = r/λπ and Wigner-Seitz cell radius is
xws ≈ 255 corresponding to a density of ∼ 108 g/cm3. The solid curve
corresponds to the relativistic Feynman-Metropolis-Teller treatment and the
dashed curve to the uniform approximation. The electron distribution for
different levels of compression as well as for different nuclear compositions
can be found in Rotondo et al. (2011c).

tic effects without any approximation. This approach promises to be useful
when theoretical predictions are essential, for example in the description of
nuclear matter at very high densities, e.g. nuclei close and beyond the neu-
tron drip line.

The densities in white dwarf interiors are not highly enough to require
such theoretical predictions. Therefore, in order to ensure the accuracy of
our results we use for (Z, A), needed to solve the relativistic Thomas-Fermi
equation (B.1.55), as well as for the nucleus mass MN(Z, A), their known
experimental values. In this way we take into account all the effects of the
nuclear interaction.

Thus, the total energy of the Wigner-Seitz cell in the present case can be
written as

Erel
FMT = EN + E

(e)
k + EC , (B.1.58)
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being

EN = MN(Z, A)c2 , (B.1.59)

E
(e)
k =

∫ Rws

0
4πr2(Ee − mene)dr , (B.1.60)

EC =
1

2

∫ Rws

Rc

4πr2e[np(r)− ne(r)]V(r)dr , (B.1.61)

where MN(Z, A) = Ar Mu is the experimental nucleus mass, e.g. for 4He,
12C, 16O and 56Fe we have Ar = 4.003, 12.01, 16.00 and 55.84 respectively. In
Eq. (B.1.61) the integral is evaluated only outside the nucleus (i.e. for r > Rc)
in order to avoid a double counting with the Coulomb energy of the nucleus
already taken into account in the nucleus mass (B.1.59). In order to avoid
another double counting we subtract to the electron energy-density Ee in
Eq. (B.1.60) the rest-energy density mec

2ne which is also taken into account
in the nucleus mass (B.1.59).

The total pressure of the Wigner-Seitz cell is given by

Prel
FMT = Pe[ne(Rws)] , (B.1.62)

where Pe[ne(Rws)] is the relativistic pressure (B.1.10) computed with the value
of the electron density at the boundary of the cell.

The electron density at the boundary Rws in the relativistic Feynman-Metropolis-
Teller treatment is smaller with respect to the one given by the uniform den-
sity approximation (see Fig. B.1). Thus, the relativistic pressure (B.1.62) gives
systematically smaller values with respect to the uniform approximation pres-
sure (B.1.10) as well as with respect to the Salpeter pressure (B.1.29).

In Fig. B.2 we show the ratio between the relativistic Feynman-Metropolis-
Teller pressure Prel

FMT (B.1.62) and the Chandrasekhar pressure PCh (B.1.10)

and the Salpeter pressure PS (B.1.29) in the case of 12C. It can be seen how
Prel

FMT is smaller than PCh for all densities as a consequence of the Coulomb

interaction. With respect to the Salpeter case, we have that the ratio Prel
FMT/PS

approaches unity from below at large densities as one should expect.

However, at low densities . 104–105 g/cm3, the ratio becomes larger than
unity due to the defect of the Salpeter treatment which, in the low density
non-relativistic regime, leads to a drastic decrease of the pressure and even
to negative pressures at densities . 102 g/cm3 or higher for heavier nuclear
compositions e.g. 56Fe (see Salpeter (1961); Rotondo et al. (2011c) and Table
B.1). This is in contrast with the relativistic Feynman-Metropolis-Teller treat-
ment which matches smoothly the classic Feynman-Metropolis-Teller equa-
tion of state in that regime (see Rotondo et al. (2011c) for details).

No analytic expression of the Wigner-Seitz cell chemical potential can be
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Figure B.2.: Ratio of the pressures in the different treatments as a function
of the density for 12C white dwarfs (see Table B.1). The solid curve corre-
sponds to the ratio between the relativistic Feynman-Metropolis-Teller pres-
sure Prel

FMT given by Eq. (B.1.62) and the Chandrasekhar pressure PCh given
by Eq. (B.1.10). The dashed curve corresponds to the ratio between the rel-
ativistic Feynman-Metropolis-Teller pressure Prel

FMT given by Eq. (B.1.62) and
the Salpeter pressure PS given by Eq. (B.1.29).
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ρ PCh PS Prel
FMT

10 1.46731× 1014 −1.35282 × 1013 4.54920 × 1014

40 1.47872× 1015 4.60243× 1014 7.09818 × 1014

70 3.75748× 1015 1.60860× 1015 2.05197 × 1015

102 6.80802× 1015 3.34940× 1015 3.90006 × 1015

103 3.15435× 1017 2.40646× 1017 2.44206 × 1017

104 1.45213× 1019 1.28976× 1019 1.28965 × 1019

105 6.50010× 1020 6.14494× 1020 6.13369 × 1020

106 2.62761× 1022 2.54932× 1022 2.54431 × 1022

107 8.46101× 1023 8.28899× 1023 8.27285 × 1023

108 2.15111× 1025 2.11375× 1025 2.10896 × 1025

109 4.86236× 1026 4.78170× 1026 4.76613 × 1026

1010 1.05977× 1028 1.04239× 1028 1.03668 × 1028

Table B.1.: Equation of state for 12C within the different treatments. The pres-
sure in the uniform approximation for µ = 2 is PCh, the Salpeter pressure is
PS and the relativistic Feynman-Metropolis-Teller pressure is Prel

FMT. The units

for the density are g/cm3 and for the pressure dyn/cm2.

given in this case, so we only write its general expression

µrel
FMT = Erel

FMT + Prel
FMTVws , (B.1.63)

where Erel
FMT and Prel

FMT are given by Eqs. (B.1.58) and (B.1.62) respectively. The
above equation, contrary to the non-relativistic formula (B.1.45), in no way
can be simplified in terms of its uniform counterparts. However, it is easy to
check that, in the limit of no Coulomb interaction ne(Rws) → 3Z/(4πR3

ws),
EC → 0, and Ek → EChVws and, neglecting the nuclear binding and the
proton-neutron mass difference, we finally obtain

µrel
FMT → µunif , (B.1.64)

as it should be expected.

Now we summarize how the equation of state of compressed nuclear mat-
ter can be computed in the Salpeter case and in the relativistic Feynman-
Metropolis-Teller case, parameterized by the total density of the system:

(i) For a given radius Rws of the Wigner-Seitz cell the relativistic Thomas-
Fermi equation (B.1.55) is integrated numerically and the density of the con-
figuration is computed as ρ = Erel

FMT/(c2Vws) where Erel
FMT is the energy of the

cell given by Eq. (B.1.58).

(ii) For that value of the density, the radius of the Wigner-Seitz cell in the
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Salpeter treatment is

Rws =

(

3Ar Mu

4πρ

)1/3

, (B.1.65)

where Eq. (B.1.15) has been used. On the contrary, in the relativistic Feynman-
Metropolis-Teller treatment no analytic expression relating Wigner-Seitz cell
radius and density can be written.

(iii) From this Wigner-Seitz cell radius, or equivalently using the value of
the density, the electron density in the Salpeter model is computed from the
assumption of uniform electron distribution and the charge neutrality condi-
tion, i.e. Eq. (B.1.15). In the relativistic Feynman-Metropolis-Teller treatment,
the electron number density at the boundary of the Wigner-Seitz cell is, fol-
lowing Eq. (B.1.53), given by

nrelFMT
e =

1

3π2λ3
π

[

χ2(xws)

x2
ws

+ 2
me

mπ

χ(xws)

xws

]3/2

, (B.1.66)

where the function χ(x) is the solution of the relativistic Thomas-Fermi equa-
tion (B.1.55).

(iv) Finally, with the knowledge of the electron density at Rws, the pressure
can be calculated. In the Salpeter approach it is given by Eq. (B.1.29) while in
the relativistic Feynman-Metropolis-Teller case it is given by Eq. (B.1.62).

B.1.3. General relativistic equations of equilibrium

Outside each Wigner-Seitz cell the system is electrically neutral, thus no over-
all electric field exists. Therefore, the above equation of state can be used to
calculate the structure of the star through the Einstein equations. Introducing
the spherically symmetric metric (B.1.5), the Einstein equations can be writ-
ten in the Tolman-Oppenheimer-Volkoff form Tolman (1939); Oppenheimer
and Volkoff (1939)

dν(r)

dr
=

2G

c2

4πr3P(r)/c2 + M(r)

r2
[

1 − 2GM(r)
c2r

] , (B.1.67)

dM(r)

dr
= 4πr2E(r)

c2
, (B.1.68)

dP(r)

dr
= −1

2

dν(r)

dr
[E(r) + P(r)] , (B.1.69)

where we have introduced the mass enclosed at the distance r through eλ(r) =
1 − 2GM(r)/(c2r), E(r) is the energy-density and P(r) is the total pressure.

We turn now to demonstrate how, from Eq. (B.1.69), it follows the gen-
eral relativistic equation of equilibrium (B.1.6), for the self-consistent Wigner-
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Seitz chemical potential µws. The first law of thermodynamics for a zero tem-
perature fluid of N particles, total energy E, total volume V, total pressure
P = −∂E/∂V, and chemical potential µ = ∂E/∂N reads

dE = −PdV + µdN , (B.1.70)

where the differentials denote arbitrary but simultaneous changes in the vari-
ables. Since for a system whose surface energy can be neglected with respect
to volume energy, the total energy per particle E/N depends only on the par-
ticle density n = N/V, we can assume E/N as an homogeneous function
of first-order in the variables N and V and hence, it follows the well-known
thermodynamic relation

E = −PV + µN . (B.1.71)

In the case of the Wigner-Seitz cells, Eq. (B.1.71) reads

Ews = −PwsVws + µws , (B.1.72)

where we have introduced the fact that the Wigner-Seitz cells are the building
blocks of the configuration and therefore we must put in Eq. (B.1.71) Nws =
1. Through the entire article we have used Eq. (B.1.72) to obtain from the
knowns energy and pressure, the Wigner-Seitz cell chemical potential (see
e.g. Eqs. (B.1.13) and (B.1.23)). From Eqs. (B.1.70) and (B.1.71) we obtain the
so-called Gibbs-Duhem relation

dP = ndµ . (B.1.73)

In a white dwarf the pressure P and the chemical potential µ are decreas-
ing functions of the distance from the origin. Thus, the differentials in the
above equations can be assumed as the gradients of the variables which, in
the present spherically symmetric case, become just derivatives with respect
to the radial coordinate r. From Eq. (B.1.73) it follows the relation

dPws

dr
= nws

dµws

dr
. (B.1.74)

From Eqs. (B.1.69), (B.1.72) and (B.1.74) we obtain

nws(r)
dµws(r)

dr
= −1

2

dν(r)

dr
nws(r)µws(r) , (B.1.75)

which can be straightforwardly integrated to obtain the first integral

eν(r)/2µws(r) = constant . (B.1.76)

The above equilibrium condition is general and it also applies for non-zero
temperature configurations ( see e.g. Klein (1949)). In such a case, it can be

1438



B.1. The relativistic Feynman-Metropolis-Teller theory for white dwarfs in
general relativity

shown that in addition to the equilibrium condition (B.1.76) the temperature

of the system satisfies the Tolman isothermality condition eν(r)/2T(r) = con-
stant Tolman (1930); Tolman and Ehrenfest (1930).

The weak-field non-relativistic limit

In the weak-field limit we have eν/2 ≈ 1 + Φ, where the Newtonian gravi-
tational potential has been defined by Φ(r) = ν(r)/2. In the non-relativistic
mechanics limit c → ∞, the chemical potential µws → µ̃ws + Mwsc2, where
µ̃ws denotes the non-relativistic free-chemical potential of the Wigner-Seitz
cell and Mws is the rest-mass of the Wigner-Seitz cell, namely, the rest-mass
of the nucleus plus the rest-mass of the electrons. Applying these considera-
tions to Eq. (B.1.76) we obtain

eν/2µws ≈ Mwsc2 + µ̃ws + MwsΦ = constant . (B.1.77)

Absorbing the Wigner-Seitz rest-mass energy Mwsc2 in the constant on the
right-hand-side we obtain

µ̃ws + MwsΦ = constant . (B.1.78)

In the weak-field non-relativistic limit, the Einstein equations (B.1.67)–(B.1.69)
reduce to

dΦ(r)

dr
=

GM(r)

r2
, (B.1.79)

dM(r)

dr
= 4πr2ρ(r) , (B.1.80)

dP(r)

dr
= −GM(r)

r2
ρ(r) , (B.1.81)

where ρ(r) denotes the rest-mass density. The Eqs. (B.1.79)–(B.1.80) can be
combined to obtain the gravitational Poisson equation

d2Φ(r)

dr2
+

2

r

dΦ(r)

dr
= 4πGρ(r) . (B.1.82)

In the uniform approximation (see Subsec. B.1.2), the equilibrium condition
given by Eq. (B.1.78) reads

µ̃e +
Ar

Z
MuΦ = constant , (B.1.83)

where we have neglected the electron rest-mass with respect to the nucleus
rest-mass and we have divided the equation by the total number of electrons
Z. This equilibrium equation is the classical condition of thermodynamic
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equilibrium assumed for non-relativistic white dwarf models (see e.g. Lan-
dau and Lifshitz (1980) for details).

Introducing the above equilibrium condition (B.1.83) into Eq. (B.1.82), and
using the relation between the non-relativistic electron chemical potential and

the particle density ne = (2me)3/2µ̃3/2
e /(3π2h̄3), we obtain

d2µ̃e(r)

dr2
+

2

r

dµ̃e(r)

dr
= −27/3m3/2

e (Ar/Z)2m2
NG

3πh̄3
µ̃3/2

e (r) , (B.1.84)

which is the correct equation governing the equilibrium of white dwarfs
within Newtonian gravitational theory (Landau and Lifshitz, 1980). It is re-
markable that the equation of equilibrium (B.1.84), obtained from the cor-
rect application of the Newtonian limit, does not coincide with the equation
given by Chandrasekhar (1931b,a, 1935, 1939), which, as correctly pointed out
by Eddington (1935), is a mixture of both relativistic and non-relativistic ap-
proaches. Indeed, the consistent relativistic equations should be Eq. (B.1.76).
Therefore a dual relativistic and non-relativistic equation of state was used
by Chandrasekhar. The pressure on the left-hand-side of Eq. (B.1.81) is taken
to be given by relativistic electrons while, the term on the right-hand-side
of Eq. (B.1.80) and (B.1.81) (or the source of Eq. (B.1.82)), is taken to be the
rest-mass density of the system instead of the total relativistic energy-density.
Such a procedure is equivalent to take the chemical potential in Eq. (B.1.78)
as a relativistic quantity. As we have seen, this is inconsistent with the weak-
field non-relativistic limit of the general relativistic equations.

The Post-Newtonian limit

Indeed, if one were to treat the problem of white dwarfs approximately with-
out going to the sophistications of general relativity, but including the effects
of relativistic mechanics, one should use at least the equations in the post-
Newtonian limit. The first-order post-Newtonian expansion of the Einstein
equations (B.1.67)–(B.1.69) in powers of P/E and GM/(c2r) leads to the equi-
librium equations (Ciufolini and Ruffini, 1983)

dΦ(r)

dr
= − 1

E(r)

[

1 − P(r)

E(r)

]

dP(r)

dr
, (B.1.85)

dM(r)

dr
= 4πr2E(r)

c2
, (B.1.86)

dP(r)

dr
= −GM(r)

r2

E(r)

c2

[

1 +
P(r)

E(r)
+

4πr3P(r)

M(r)c2

+
2GM(r)

c2r

]

, (B.1.87)
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where Eq. (B.1.87) is the post-Newtonian version of the Tolman-Oppenheimer-
Volkoff equation (B.1.69).

Replacing Eq. (B.1.74) into Eq. (B.1.85) we obtain

[

1 − P(r)

E(r)

]

dµws(r)

dr
+

E(r)/c2

nws(r)

dΦ(r)

dr
= 0 . (B.1.88)

It is convenient to split the energy-density as E = c2ρ+U, where ρ = Mwsnws

is the rest-energy density and U the internal energy-density. Thus, Eq. (B.1.88)
becomes

dµws(r)

dr
+ Mws

dΦ(r)

dr
− P(r)

E(r)

dµws(r)

dr

+
U/c2

nws(r)

dΦ(r)

dr
= 0 , (B.1.89)

which is the differential post-Newtonian version of the equilibrium equa-
tion (B.1.76) and where the post-Newtonian corrections of equilibrium can
be clearly seen. Applying the non-relativistic limit c → ∞ to Eq. (B.1.89):
P/E → 0, U/c2 → 0, and µws → Mwsc2 + µ̃ws, we recover the Newtonian
equation of equilibrium (B.1.78).

B.1.4. Mass and radius of general relativistic stable white
dwarfs

Inverse β-decay instability

It is known that white dwarfs may become unstable against the inverse β-
decay process (Z, A) → (Z − 1, A) through the capture of energetic elec-
trons (see e.g. Hund (1936); Landau (1938); Zel’Dovich (1958); Harrison et al.
(1958)). In order to trigger such a process, the electron Fermi energy must
be larger than the mass difference between the initial nucleus (Z, A) and the

final nucleus (Z − 1, A). We denote this threshold energy as ǫ
β
Z. Usually it is

satisfied ǫ
β
Z−1 < ǫ

β
Z and therefore the initial nucleus undergoes two succes-

sive decays, i.e. (Z, A) → (Z − 1, A) → (Z − 2, A) (see e.g. Salpeter (1961);
Shapiro and Teukolsky (1983)). Some of the possible decay channels in white

dwarfs with the corresponding known experimental threshold energies ǫ
β
Z

are listed in Table B.2. The electrons in the white dwarf may eventually reach

the threshold energy to trigger a given decay at some critical density ρ
β
crit.

Configurations with ρ > ρ
β
crit become unstable (see Harrison et al. (1958);

Salpeter (1961) for details).
Within the uniform approximation, e.g. in the case of the Salpeter equation

of state Salpeter (1961), the critical density for the onset of inverse β-decay is
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Decay ǫ
β
Z ρ

β,relFMT
crit ρ

β,unif
crit

4He →3 H + n → 4n 20.596 1.39 × 1011 1.37× 1011

12C →12B →12Be 13.370 3.97 × 1010 3.88× 1010

16O →16N →16C 10.419 1.94 × 1010 1.89× 1010

56Fe →56Mn →56Cr 3.695 1.18 × 109 1.14 × 109

Table B.2.: Onset of inverse beta decay instability for 4He, 12C, 16O and 56Fe.

The experimental inverse β-decay energies ǫ
β
Z are given in MeV and they

have been taken from Table 1 of Audi et al. (2003). The corresponding critical

density for the uniform electron density model, ρ
β,unif
crit given by Eq. (B.1.90),

is given in g/cm3 as well as the critical density ρ
β,relFMT
crit for the relativistic

Feynman-Metropolis-Teller case. The numerical values of ǫ
β
Z are taken from

Audi et al. (2003), see also Shapiro and Teukolsky (1983)
.

given by

ρ
β,unif
crit =

Ar

Z

Mu

3π2h̄3c3
[(ǫ

β
Z)

2 + 2mec
2ǫ

β
Z]

3/2 , (B.1.90)

where Eq. (B.1.15) has been used.
Because the computation of the electron Fermi energy within the relativis-

tic Feynman-Metropolis-Teller approach Rotondo et al. (2011c) involves the
numerical integration of the relativistic Thomas-Fermi equation (B.1.55), no

analytic expression for ρ
β
crit can be found in this case. The critical density

ρ
β,relFMT
crit is then obtained numerically by looking for the density at which the

electron Fermi energy (B.1.50) equals ǫ
β
Z.

In Table B.2 we show, correspondingly to each threshold energy ǫ
β
Z, the

critical density both in the Salpeter case ρ
β,unif
crit given by Eq. (B.1.90) and in

the relativistic Feynman-Metropolis-Teller case ρ
β,relFMT
crit . It can be seen that

ρ
β,relFMT
crit > ρ

β,unif
crit as one should expect from the fact that, for a given den-

sity, the electron density at the Wigner-Seitz cell boundary satisfies nrelFMT
e <

nunif
e . This means that, in order to reach a given energy, the electrons within

the relativistic Feynman-Metropolis-Teller approach must be subjected to a
larger density with respect to the one given by the approximated Salpeter
analytic formula (B.1.90).

General relativistic instability

The concept of the critical mass has played a major role in the theory of stellar
evolution. For Newtonian white dwarfs the critical mass is reached asymp-
totically at infinite central densities of the object. One of the most important

1442



B.1. The relativistic Feynman-Metropolis-Teller theory for white dwarfs in
general relativity

105 106 107 108

�c (g/cm3 )

0.2

0.4

0.6

0.8

1.0

1.2

M
M�

Relativistic FMT
Hamada and Salpeter
Chandrasekhar

108 109 1010 1011

�c (g/cm3 )

1.2

1.3

1.4

M
M	


�instability
GR�instability

Relativistic FMT
Hamada and Salpeter
Chandrasekhar

Figure B.3.: Mass in solar masses as a function of the central density in the
range (left panel) 105–108 g/cm3 and in the range (right panel) 108–5 × 1011

g/cm3 for 4He white dwarfs. The solid curve corresponds to the present
work, the dotted curves are the Newtonian configurations of Hamada and
Salpeter and the dashed curve are the Newtonian configurations of Chan-
drasekhar.

general relativistic effects is to shift this critical point to some finite density
ρGR

crit.
This general relativistic effect is an additional source of instability with re-

spect to the already discussed instability due to the onset of inverse β-decay
which, contrary to the present general relativistic one, applies also in the
Newtonian case by shifting the maximum mass of Newtonian white dwarfs
to finite densities (see e.g. Harrison et al. (1958)).

Numerical results

In Figs. B.3–B.10 we have plotted the mass-central density relation and the
mass-radius relation of general relativistic 4He, 12C, 16O and 56Fe white dwarfs.
In particular, we show the results for the Newtonian white dwarfs of Hamada
and Salpeter (1961), for the Newtonian white dwarfs of Chandrasekhar (1931b)
and the general relativistic configurations obtained in this work based on
the relativistic Feynman-Metropolis-Teller equation of state (Rotondo et al.,
2011c).

Since our approach takes into account self-consistently both β-decay equi-
librium and general relativity, we can determine if the critical mass is reached
due either to inverse β-decay instability or to the general relativistic instabil-
ity.

A comparison of the numerical value of the critical mass as given by Stoner
(1929), Eq. (B.1.1), by Chandrasekhar (1931b) and Landau (1932), Eq. (B.1.2),
by Hamada and Salpeter (1961) and, by the treatment presented here can be
found in Table B.3.

From the numerical integrations we have obtained:
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Figure B.4.: Mass in solar masses as a function of the radius in units of 104 km
for 4He white dwarfs. The left and right panels show the configurations for
the same range of central densities of the corresponding panels of Fig. B.3.
The solid curve corresponds to the present work, the dotted curves are the
Newtonian configurations of Hamada and Salpeter and the dashed curve are
the Newtonian configurations of Chandrasekhar.
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Figure B.5.: Mass in solar masses as a function of the central density in
the range (left panel) 105–108 g/cm3 and in the range (right panel) 108–1011

g/cm3 for 12C white dwarfs. The solid curve corresponds to the present work,
the dotted curves are the Newtonian configurations of Hamada and Salpeter
and the dashed curve are the Newtonian configurations of Chandrasekhar.
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Figure B.6.: Mass in solar masses as a function of the radius in units of 104 km
for 12C white dwarfs. The left and right panels show the configurations for
the same range of central densities of the corresponding panels of Fig. B.5.
The solid curve corresponds to the present work, the dotted curves are the
Newtonian configurations of Hamada and Salpeter and the dashed curve are
the Newtonian configurations of Chandrasekhar.
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Figure B.7.: Mass in solar masses as a function of the central density in the
range (left panel) 105–108 g/cm3 and in the range (right panel) 108–1011

g/cm3 for 16O white dwarfs. The solid curve corresponds to the present
work, the dotted curves are the Newtonian configurations of Hamada and
Salpeter and the dashed curve are the Newtonian configurations of Chan-
drasekhar.
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Figure B.8.: Mass in solar masses as a function of the radius in units of 104 km
for 16O white dwarfs. The left and right panels show the configurations for
the same range of central densities of the corresponding panels of Fig. B.7.
The solid curve corresponds to the present work, the dotted curves are the
Newtonian configurations of Hamada and Salpeter and the dashed curve are
the Newtonian configurations of Chandrasekhar.
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Figure B.9.: Mass in solar masses as a function of the central density in the
range (left panel) 105–108 g/cm3 and in the range (right panel) 108–3 × 109

g/cm3 for 56Fe white dwarfs. The solid curve corresponds to the present
work, the dotted curves are the Newtonian configurations of Hamada and
Salpeter and the dashed curve are the Newtonian configurations of Chan-
drasekhar.
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Figure B.10.: Mass in solar masses as a function of the radius in units of 104

km for 56Fe white dwarfs. The left and right panels show the configurations
for the same range of central densities of the corresponding panels of Fig. B.9.
The solid curve corresponds to the present work, the dotted curves are the
Newtonian configurations of Hamada and Salpeter and the dashed curve are
the Newtonian configurations of Chandrasekhar.

1. 4He and 12C white dwarfs satisfy ρGR
crit < ρ

β
crit (see Figs. B.3–B.6 and Ta-

bles B.2 and B.3), so they are unstable with respect to general relativistic
effects. The critical density of 12C white dwarfs is ∼ 2.12 × 1010 g/cm3,
to be compared with the value 2.65× 1010 g/cm3 obtained from calcula-
tions based on general relativistic corrections to the theory of polytropes
(see e.g. Shapiro and Teukolsky (1983)).

2. White dwarfs composed of heavier material than 12C, e.g. 16O and 56Fe
are unstable due to inverse β-decay of the nuclei (see Figs. B.7–B.10 and
Tables B.2 and B.3). It is worth to notice that the correct evaluation
of general relativistic effects and of the combined contribution of the
electrons to the energy-density of the system introduce, for 12C white
dwarfs, a critical mass not due to the inverse beta decay. When the con-
tribution of the electrons to the energy-density is neglected (e.g. Chan-
drasekhar (1931b) and Hamada and Salpeter (1961), see Eq. (B.1.15)) the
critical density for Carbon white dwarfs is determined by inverse beta
decay irrespective of the effects of general relativity.

3. It can be seen from Figs. B.3–B.10 that the drastic decrease of the Salpeter
pressure at low densities (see Salpeter (1961); Rotondo et al. (2011c) and
Table B.1 for details) produces an underestimate of the mass and the
radius of low density (low mass) white dwarfs.

4. The Coulomb effects are much more pronounced in the case of white
dwarfs with heavy nuclear compositions e.g. 56Fe (see Figs. B.9 and
B.10).
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ρH&S
crit MH&S

crit /M⊙ ρFMTrel
crit MFMTrel

crit /M⊙
4He 1.37 × 1011 1.44064 1.56 × 1010 1.40906
12C 3.88 × 1010 1.41745 2.12 × 1010 1.38603
16O 1.89 × 1010 1.40696 1.94 × 1010 1.38024
56Fe 1.14× 109 1.11765 1.18× 109 1.10618

Table B.3.: Critical density and corresponding critical mass for the onset
of gravitational collapse of the Newtonian 4He, 12C, 16O and 56Fe white
dwarfs of Hamada and Salpeter (1961), based on the Salpeter equation of
state (Salpeter, 1961), and of the corresponding general relativistic configu-
rations obtained in this work based on the relativistic Feynman-Metropolis-
Teller equation of state (Rotondo et al., 2011c). Densities are in g/cm3 and
masses in solar masses. For the sake of comparison, the critical mass of Stoner
(B.1.1) and of the one of Chandrasekhar-Landau (B.1.2) are MStoner

crit ∼ 1.72M⊙
and MCh−L

crit ∼ 1.45M⊙, for the average molecular weight µ = Ar/Z = 2.

B.1.5. Conclusions

We have addressed the theoretical physics aspects of the white dwarf config-
urations of equilibrium, quite apart from the astrophysical application.

The recently accomplished description of a compressed atom within the
global approach of the relativistic Feynman, Metropolis and Teller (Rotondo
et al., 2011c) has been here solved within the Wigner-Seitz cell and applied
to the construction of white dwarfs in the framework of general relativity.
From a theoretical physics point of view, this is the first unified approach
of white dwarfs taking into account consistently the gravitational, the weak,
the strong and the electromagnetic interactions, and it answers open theoret-
ical physics issues in this matter. No analytic formula for the critical mass
of white dwarfs can be derived and, on the contrary, the critical mass can ob-
tained only through the numerical integration of the general relativistic equa-
tions of equilibrium together with the relativistic Feynman-Metropolis-Teller
equation of state.

The value of the critical mass and the radius of white dwarfs in our treat-
ment and in the Hamada and Salpeter (1961) treatment becomes a function
of the composition of the star. Specific examples have been given in the case
of white dwarfs composed of 4He, 12C, 16O and 56Fe. The results of Chan-
drasekhar, of Hamada and Salpeter and ours have been compared and con-
trasted (see Table B.3 and Figs. B.3–B.10).

The critical mass is a decreasing function of Z and Coulomb effects are
more important for heavy nuclear compositions. The validity of the Salpeter
approximate formulas increases also with Z, namely for heavy nuclear com-
positions the numerical values of the masses as well as of the radii of white
dwarfs obtained using the Salpeter equation of state are closer to the ones ob-
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tained from the full numerical integration of the general relativistic treatment
presented here.

Turning now to astrophysics, the critical mass of white dwarfs is today ac-
quiring a renewed interest in view of its central role in the explanation of
the supernova phenomena (Phillips, 1993; Riess et al., 1998; Perlmutter et al.,
1999; Riess et al., 2004). The central role of the critical mass of white dwarfs as
related to supernova was presented by Hoyle and Fowler (1960) explaining
the difference between type I and type II Supernova. This field has developed
in the intervening years to a topic of high precision research in astrophysics
and, very likely, both the relativistic and the Coulomb effects outlined in this
article will become topic of active confrontation between theory and obser-
vation. For instance, the underestimate of the mass and the radius of low
density white dwarfs within the Hamada and Salpeter (1961) treatment (see
Figs. B.3–B.10) leads to the possibility of a direct confrontation with observa-
tions in the case of low mass white dwarfs e.g. the companion of the Pulsar
J1141-6545 (Kramer, 2010).

We have finally obtained a general formula in Eq. (B.1.76) as a “first inte-
gral” of the general relativistic equations of equilibrium. This formula relates
the chemical potential of the Wigner-Seitz cells, duly obtained from the rela-
tivistic Feynman-Metropolis-Teller model (Rotondo et al., 2011c) taking into
account weak, nuclear and electromagnetic interactions, to the general rela-
tivistic gravitational potential at each point of the configuration. Besides its
esthetic value, this is an important tool to examine the radial dependence of
the white dwarf properties and it can be also applied to the crust of a neutron
star as it approaches to the physical important regime of neutron star cores.

The formalism we have introduced allows in principle to evaluate subtle
effects of a nuclear density distribution as a function of the radius and of
the Fermi energy of the electrons and of the varying depth of the general
relativistic gravitational potential. The theoretical base presented in this ar-
ticle establishes also the correct framework for the formulation of the more
general case when finite temperatures and magnetic fields are present. This
treatment naturally opens the way to a more precise description of the crust
of neutron stars, which will certainly become an active topic of research in
view of the recent results by Goriely et al. (2011a,b) on the importance of the
Coulomb effects in the r-process nucleosynthesis of the crust material during
its post-ejection evolution in the process of gravitational collapse and/or in
the merging of neutron star binaries.
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B.2. On the maximum mass and minimum period

of general relativistic uniformly rotating white

dwarfs

Equilibrium configurations of non-rotating 4He, 12C, 16O and 56Fe white dwarfs
(WDs) within general relativity have been recently constructed (Rotondo et al.,
2011b). The white dwarf matter has been there described by the relativis-
tic generalization of the Feynman-Metropolis-Teller (RFMT) equation of state
(EoS) obtained by Rotondo et al. (2011c). A new mass-radius relation that
generalizes both the Chandrasekhar (1931b) and the Hamada and Salpeter
(1961) works has been there obtained, leading to a smaller maximum mass
and a larger minimum radius with respect to previous calculations. In addi-
tion, it has been there shown how both general relativity and inverse β-decay
are relevant for the instability of non-rotating WDs upon their composition
(see Rotondo et al. (2011b) and Table B.4, for details).

Comp. ρcrit (g/cm3) Instability MJ=0
max/M⊙

4He 1.56× 1010 GR 1.40906
12C 2.12× 1010 GR 1.38603
16O 1.94× 1010 inv. β-decay 1.38024
56Fe 1.18 × 109 inv. β-decay 1.10618

Table B.4.: Critical density and corresponding critical mass for the onset of
gravitational collapse of the general relativistic non-rotating 4He, 12C, 16O
and 56Fe WDs obtained in Rotondo et al. (2011b), based on the RFMT EoS
Rotondo et al. (2011c). We indicate in the third column if the critical density
is due either to inverse β-decay or to general relativistic effects, see Rotondo
et al. (2011b) for details.

We here extend the previous results of Rotondo et al. (2011b) to the case
of general relativistic uniformly rotating WDs within Hartle’s formalism. It
describes the structure of rotating objects approximately up to second order
terms in the angular velocity of the star Ω: in this “slow” approximation
regime the solution of the Einstein equations in the exterior can be writ-
ten in analytic closed form in terms of the mass, angular momentum and
quadrupole moment of the star Hartle (1967a); Hartle and Thorne (1968a).
The corresponding interior solution that matches with the exterior one can
be then constructed by solving numerically a system of ordinary differential
equations, see Hartle (1967a); Hartle and Thorne (1968a) for details.

We focus here mainly on two astrophysically important quantities: the
maximum stable mass and the minimum rotation period of the WD. Rotating
WDs have more stringent and complex stability criteria with respect to the
non-rotating case. Besides the inverse β-decay instability, two additional lim-
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Decay ǫ
β
Z (MeV) ρ

β
crit (g/cm3)

4He →3 H + n → 4n 20.596 1.39 × 1011

12C →12B →12Be 13.370 3.97 × 1010

16O →16N →16C 10.419 1.94 × 1010

56Fe →56Mn →56Cr 3.695 1.18 × 109

Table B.5.: Onset of inverse beta decay instability for 4He, 12C, 16O and 56Fe.

The experimental inverse β-decay energies ǫ
β
Z have been taken from Table 1 of

Audi et al. (2003); see also Shapiro and Teukolsky (1983). The corresponding

critical density ρ
β
crit is obtained from the RFMT EoS Rotondo et al. (2011c)

.

its on the stability of rotating WDs are due to mass-shedding at the equator
and axisymmetric (secular) instability.

Inverse β-decay– White dwarfs may become unstable against the inverse β-
decay process (Z, A) → (Z − 1, A) through the capture of energetic electrons.
In order to trigger such a process, the electron Fermi energy must be larger
than the mass difference between the initial nucleus (Z, A) and the final nu-

cleus (Z − 1, A). We denote this threshold energy as ǫ
β
Z. Usually it is satisfied

ǫ
β
Z−1 < ǫ

β
Z and therefore the initial nucleus undergoes two successive decays,

i.e. (Z, A) → (Z − 1, A) → (Z − 2, A) (see e.g. Salpeter (1961); Shapiro and
Teukolsky (1983)). Some of the possible decay channels in WDs with the cor-

responding known experimental threshold energies ǫ
β
Z are listed in Table B.5.

The electrons in the white dwarf may eventually reach the threshold energy

to trigger a given decay at some critical density ρ
β
crit. Configurations with

ρ > ρ
β
crit become unstable (see Harrison et al. (1958); Salpeter (1961) for de-

tails). In Table B.5 correspondingly to each threshold energy ǫ
β
Z, the critical

density given by the RFMT EoS ρ
β
crit is shown; see Rotondo et al. (2011b) for

details.

Mass-shedding limit–If the velocity of a particle on the surface of the star
exceeds the velocity of a free-particle, the star should start to loose its mass
becoming thus unstable (Stergioulas, 2003). A procedure to obtain the maxi-
mum possible angular velocity of the star before reaching this limit was de-
veloped in Friedman et al. (1986). However, in practice, it is less complicated
to compute the mass-shedding angular velocity of a star Ωms, from the orbital
angular velocity Ωorb of a co-rotating test particle in the external field at the
equatorial plane. For the Hartle-Thorne external solution Hartle and Thorne
(1968a), the orbital angular velocity Ωorb for corotating particles is given by
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(see e.g. Torok et al., 2008; Bini et al., 2011)

Ωorb(r) =
uφ

ut
=

−gtφ,r +
√

(gtφ,r)2 − gtt,rgφφ,r

gφφ,r
(B.2.1)

where uφ and ut are the angular and time components of the four-velocity,
and gαβ,r, (so that α, β = t, φ), are the derivatives of the metric tensor compo-
nents with respect to r, one obtains

Ωorb(r) = Ω0(r)

[

1 − F1(r)
J

M2
+ F2(r)

J2

M4
+ F3(r)

Q

M3

]

(B.2.2)

where

Ω0 =
M1/2

r3/2
, F1 =

M3/2

r3/2

F2 = (48M7 − 80M6r + 4M5r2 − 18M4r3 + 40M3r4

+10M2r5 + 15Mr6 − 15r7)/[16M2r4(r − 2M)] + F

F3 =
6M4 − 8M3r − 2M2r2 − 3Mr3 + 3r4

16M2r(r − 2M)/5
− F

F =
15(r3 − 2M3)

32M3
ln

r

r − 2M

The parameters M, J and Q, related to the total mass, the angular momen-
tum and the quadrupole moment, respectively, are obtained for a given EoS,
from the matching procedure between the internal and external solutions.
The total mass is defined by M = MJ 6=0 = MJ=0 + δM, where MJ=0 is the
mass of a static white dwarf with the same central density as MJ 6=0, and δM
is the contribution to the mass due to rotation. The value of Ωms can be com-
puted by gradually increasing the value of Ω until it reaches Ωorb. Clearly,
the matching is carried out at the surface of the rotating star, therefore in the
above formula we set r = Req.

Axisymmetric instability–A turning-point method has been used in Fried-
man et al. (1988) to obtain a simple criterion governing the secular stability
of uniformly rotating relativistic stars to axisymmetric perturbations. This
criterion has been used for uniformly rotating neutron stars and here we use
it for uniformly rotating WDs. The main idea is that along a sequence of
rotating stars with fixed angular momentum and increasing central density,
the configuration with maximum mass establishes the onset of axisymmet-
ric instability. Mathematically, this limit can be expressed by Friedman et al.
(1988)

(

∂M(ρc, J)

∂ρc

)

J

= 0, (B.2.3)
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Figure B.11.: Mass in solar masses versus the central density for 12C (left
panel) and for 16O (right panel) WDs. The solid curve corresponds to the
static mass, the dashed curve corresponds to the Keplerian sequence, dashed-
dotted to inverse β - instability boundary, and the dotted curve to the axisym-
metric instability.

which separates regions of stable and unstable stars. In the particular case
J = 0, the above limit reduces to the well-known concept of maximum mass
of static stars.

Maximum mass–In Figs. B.11–B.12 we show the mass-central density rela-
tion and the mass-radius relation of general relativistic rotating 12C and 16O
WDs. We explicitly show the above three limits on stability and, correspond-
ingly, in Fig. B.13 we have plotted the allowed region of stability.

We have found that the maximum mass of rotating WDs belongs to the
Keplerian sequence and it can be expressed as

MJ 6=0
max = kMJ=0

max , (B.2.4)

where MJ=0
max is the maximum stable mass of non-rotating WDs and k is the

numerical factor depending upon nuclear composition; see Table B.6 and
Figs. B.11 and B.12 for details. It is worth to mention that this maximum
mass is not determined by a critical density as in the non-rotating case, see
e.g.Rotondo et al. (2011b) and Table B.4. In the case of rotating WDs, the
density is limited either by the critical density for inverse β-decay (see Ta-
ble B.5) or by the critical density at which the limit given by Eq. (B.2.3) is
reached. However, the angular momentum J along the Keplerian sequence is
not constant and thus Eq. (B.2.3) does not limit, in principle, such a sequence.
We have additionally verified that none of the rotating WDs belonging to
the mass-shedding sequence is the maximum of some J =constant sequence,
and therefore they are indeed axisymmetrically stable. We then extend the

Keplerian sequence in Fig. B.11 all the way up to the values ρ
β
crit of Table B.5.

Using the weak-field approximation, Roxburgh and Durney (1966) com-
puted the maximum mass 1.4825M⊙ for the mass-shedding WD sequence,
as well as the critical polar radius 363 km for rotating instability; both of
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Figure B.12.: Mass in solar masses versus the equatorial radius in units of 104

km for 12C (left panel) and for 16O (right panel) WDs. The left and right pan-
els show the configurations for the same range of central densities of the cor-
responding panels of Fig. B.11. The solid curve corresponds to the static mass,
the dashed curve corresponds to the Keplerian sequence, dashed-dotted to
inverse β-instability boundary, and the dotted curve to the axisymmetric in-
stability.
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Figure B.13.: Dimensionless angular momentum j ≡ cJ/(GM2) versus the
mass of rotating WDs, normalized to the maximum non-rotating mass. The
left panel corresponds to12C WDs and the right panel to 16O WDs.
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Composition σ k Pmin MJ=0
max RJ=0

min R
Pmin
p

4He 0.26952 1.0646 0.284 1.40906 1163 564
12C 0.54692 1.0632 0.501 1.38603 1051 817
16O 0.72343 1.0626 0.687 1.38024 1076 1005
56Fe 0.71685 1.0864 2.195 1.10618 2180 2000

Table B.6.: The minimum period Pmin of general relativistic 4He, 12C, 16O
and 56Fe WDs. Pmin is given in seconds, the maximum mass of non-rotating

WDs MJ=0
max obtained in Rotondo et al. (2011b) is given in solar masses and

the corresponding minimum radius RJ=0
min is in km. The polar radius of the

configuration with Pmin, R
Pmin
p , is also given in km. It is worth to recall that

the configuration with Pmin is obtained for a WD rotating at mass-shedding
limit and with central density given by the critical density for inverse β-decay
(see Table B.5 and Fig. B.11).

them assuming an average molecular weight µ = 2 for the EoS employed
by Chandrasekhar in his classic work Chandrasekhar (1931b). This values
must be compared with the ones obtained here and summarized in Table B.6.
The Roxburgh critical radius is rather small with respect to our critical po-
lar radii. It is clear that such a small radius would lead to a configuration
with central density over the limit established by inverse β-decay: the aver-
age density obtained for the Roxburgh’s critical configuration is ∼ 1.46× 1010

g/cm3, very close to ρ
β
crit = 3.97 × 1010 g/cm3 for 12C WDs and even closer

to ρ
β
crit = 1.94 × 1010 g/cm3 for 16O WDs (see Table B.5).

Minimum period– We have found that the minimum rotation period Pmin of
WDs is obtained for a configuration rotating at Keplerian angular velocity at
the critical inverse β-decay density; i.e. is the configuration lying at the cross-
ing point between the mass-shedding and the inverse β-decay boundaries;
see e.g. Figs. B.11 and B.13. The corresponding values of Pmin for 4He, 12C,
16O and 56Fe WDs are shown in Table B.6. The value of Pmin lies between 0.28
and 2.2 seconds and it can be expressed by the simple formula

Pmin = σ

(

M⊙
MJ=0

max

)
1
2
(

RJ=0
min

103km

)
3
2

sec, (B.2.5)

where σ is a numerical factor depending on the nuclear composition (details
are given in Table B.6).

Traditionally, the rotating stability of WDs has been studied assuming the
EoS employed by Chandrasekhar in his classic work Chandrasekhar (1931b),
based on the uniform approximation for the electron component without tak-
ing into account the microscopic screening caused by the Coulomb interac-
tion. In addition, the process of inverse β-decay of the composing nuclei can-

1455



B. White Dwarfs Physics and Astrophysics

not be properly studied within such an EoS, see e.g. Rotondo et al. (2011c,b)
for details. Since the classic work of Ostriker and Bodenheimer (1968) on the
stability of rotating WDs (see e.g. also Durisen (1975)), it has been believed
that only very massive differentially rotating WDs could be axisymmetrically
unstable. Indeed, we have shown in this letter that uniformly rotating WDs
can be also axisymmetrically unstable, see Figs. B.11 and B.13.

Fig. B.13 is of particular astrophysical relevance. Configurations lying in
the shaded region are stable against the mass-shedding, inverse β-decay and
axisymmetric instabilities. WDs with masses smaller than the maximum non-

rotating mass (the Chandrasekhar mass), i.e. MJ 6=0 < MJ=0
max can rotate from

the static limit all the way up to the mass-shedding limit. However, con-

figurations with MJ 6=0 > MJ=0
max, hereafter super-Chandrasekhar WDs, must

have an angular momentum larger than some value J > 0. Thus, super-
Chandrasekhar WDs are stabilized by rotation and there is some minimum
angular velocity, depending on their mass and composition, below which
they undergo gravitational collapse. In this respect it is worth to stress that
we have found that super-Chandrasekhar 12C WDs present axisymmetric,
inverse β-decay as well as mass-shedding instabilities. For heavier nuclear
compositions e.g. 16O WDs, the axisymmetric instability does not occur.

The results of the present work are relevant both for the theory of type
Ia supernovae in the context of delayed explosions as well as for the white
dwarf model of Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars.
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B.3. SGRs and AXPs as rotation powered massive

white dwarfs

B.3.1. Introduction

Soft Gamma Ray Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs) are
a class of compact objects that show interesting observational properties (see
e.g. Mereghetti, 2008): rotational periods in the range P ∼ (2–12) s, a narrow
range with respect to the wide range of ordinary pulsars P ∼ (0.001–10) s;
spin-down rates Ṗ ∼ (10−13–10−10), larger than ordinary pulsars Ṗ ∼ 10−15;
strong outburst of energies ∼ (1041–1043) erg, and for the case of SGRs, gi-
ant flares of even large energies ∼ (1044–1047) erg, not observed in ordinary
pulsars.

The recent observation of SGR 0418+5729 with a rotational period of P =
9.08 s, an upper limit of the first time derivative of the rotational period Ṗ <

6.0 × 10−15 (Rea et al., 2010), and an X-ray luminosity of LX = 6.2 × 1031

erg/s promises to be an authentic Rosetta Stone, a powerful discriminant for
alternative models of SGRs and AXPs.

If described as a neutron star of M = 1.4M⊙, R = 10 km and a moment of
inertia I ≈ 1045 g cm2, which we adopt hereafter as fiducial parameters, the
loss of rotational energy of the neutron star

ĖNS
rot = −4π2 I

Ṗ

P3
= −3.95 × 1046 Ṗ

P3
erg/s , (B.3.1)

associated to its spin-down rate Ṗ, cannot explain the X-ray luminosity of
SGR 0418+5729, i.e. ĖNS

rot < LX, excluding the possibility of identifying this
source as an ordinary spin-down powered pulsar.

The magnetar model of SGRs and AXPs, based on a neutron star of fiducial
parameters, needs a magnetic field larger than the critical field for vacuum
polarization Bc = m2

e c3/(eh̄) = 4.4 × 1013 G in order to explain the observed
X-ray luminosity in terms of the release of magnetic energy (see Duncan and
Thompson, 1992; Thompson and Duncan, 1995, for details). However, the
inferred upper limit of the surface magnetic field of SGR 0418+5729 B < 7.5×
1012 G describing it as a neutron star (see Rea et al., 2010, for details), is well
below the critical field challenging the power mechanism based on magnetic
field decay purported in the magnetar scenario.

We show that the observed upper limit on the spin-down rate of SGR
0418+5729 is, instead, perfectly in line with a model based on a massive fast
rotating highly magnetized white dwarf (see e.g. Paczynski, 1990) of mass
M = 1.4M⊙, radius R = 103 km, and moment of inertia I ≈ 1049 g cm2,
which we adopt hereafter as fiducial white dwarf parameters. Such a con-
figuration leads for SGR 0418+5729 to a magnetic field B < 7.5 × 108 G. The
X-ray luminosity can then be expressed as originating from the loss of rota-
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tional energy of the white dwarf leading to a theoretical prediction for the
first time derivative of the rotational period

LX P3

4π2 I
≤ ṖSGR0418+5729 < 6.0 × 10−15 , (B.3.2)

where the lower limit is established by assuming that the observed X-ray
luminosity of SGR 0418+5729 coincides with the rotational energy loss of the
white dwarf. For this specific source, the lower limit of Ṗ given by Eq. (B.3.2)
is ṖSGR0418+5729 ≥ 1.18 × 10−16. This prediction is left to be verified by the
dedicated scientific missions.

The assumption of massive fast rotating highly magnetized white dwarfs
appears to be very appropriate since their observation has been solidly con-
firmed in the last years thanks to observational campaigns carried out by the
X-ray Japanese satellite Suzaku (see e.g. Terada et al., 2008c; Terada, 2008; Ter-
ada et al., 2008d,b,a). The magnetic fields observed in white dwarfs are larger
than 106 G all the way up to 109 G (see e.g Angel et al., 1981; Ferrario et al.,
1997; Należyty and Madej, 2004; Ferrario and Wickramasinghe, 2005; Terada
et al., 2008c; Külebi et al., 2009). These observed massive fast rotating highly
magnetized white dwarfs share common properties with SGRs/AXPs. The
specific comparison between SGR 0418+5729 and the white dwarf AE Aquarii
(Terada et al., 2008c) is given in Sec. B.3.4.

The aim of this article is to investigate the implications of the above consid-
erations to all observed SGRs and AXPs. The article is organized as follows.
In Sec. B.3.2 we summarize the main features of a model for SGRs and AXPs
based on rotation powered white dwarfs while, in Sec. B.3.3, we recall the
magnetar model. In Sec. B.3.4 we present the observations of massive fast
rotating highly magnetized white dwarfs. The constraints on the rotation
rate imposed by the rotational instabilities of fast rotating white dwarfs are
discussed in Sec. B.3.5 and in Sec. B.3.6 we analyze the glitch-outburst con-
nection in SGRs and AXPs. The magnetospheric emission from the white
dwarf is discussed in Sec. B.3.7 and the possible connection between SGRs
and AXPs with supernova remnants is presented in Sec. B.3.8. In Sec. B.3.9
we address the problem of fiducial parameters of both white dwarfs and neu-
tron stars and, in Sec. B.3.10, we summarize conclusions and remarks.

B.3.2. SGRs and AXPs within the white dwarf model

We first recall the pioneering works of Morini et al. (1988) and Paczynski
(1990) on 1E 2259+586. This source is pulsating in the X-rays with a period
P = 6.98 s (Fahlman and Gregory, 1981), a spin-down rate of Ṗ = 4.8× 10−13

(Davies et al., 1990) and X-ray luminosity LX = 1.8× 1034 erg/s (Gregory and
Fahlman, 1980; Hughes et al., 1981; Morini et al., 1988). Specially relevant in
the case of 1E 2259+586 is also its position within the supernova remnant
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G109.1-1.0 with age estimated t − t0 = (12–17) kyr (Gregory and Fahlman,
1980; Hughes et al., 1981).

Paczynski developed for 1E 2259+586 a model based on a massive fast ro-
tating highly magnetized white dwarf. The upper limit on the magnetic field
(see e.g. Ferrari and Ruffini, 1969) obtained by requesting that the rotational
energy loss due to the dipole field be smaller than the electromagnetic emis-
sion of the dipole, is given by

B =

(

3c3

8π2

I

R6
PṖ

)1/2

, (B.3.3)

where P and Ṗ are observed properties and the moment of inertia I and
the radius R of the object are model dependent properties. For the afore-
mentioned fiducial parameters of a fast rotating magnetized white dwarf,
Eq. (B.3.3) becomes

B = 3.2 × 1015
(

PṖ
)1/2

G . (B.3.4)

The loss of rotational energy within this model is given by

ĖWD
rot = −4π2 I

Ṗ

P3
= −3.95 × 1050 Ṗ

P3
erg/s , (B.3.5)

which amply justifies the steady X-ray emission of 1E 2259+586 (see Table
B.9).

A further development for the source 1E 2259+586, came from Usov (1994),
who introduced the possibility in a white dwarf close to the critical mass
limit, to observe sudden changes in the period of rotation, namely glitches.

When the rotation of the white dwarf slows down, centrifugal forces of the
core decrease and gravity pulls it to a less oblate shape thereby stressing it.
The release of such stresses leads to a sudden decrease of moment of inertia
and correspondingly, by conservation of angular momentum

J = IΩ = (I + ∆I)(Ω + ∆Ω) = constant , (B.3.6)

to a shortening of the rotational period

∆I

I
=

∆P

P
= −∆Ω

Ω
, (B.3.7)

leading to a gain of rotational energy in the spin-up process of the glitch

∆EWD
rot = −2π2 I

P2

∆P

P
= −1.98 × 1050 ∆P

P3
erg , (B.3.8)

which is then released in the burst activity on the time scales from months to
years (see e.g. Fig. B.14).
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For the evolution of the period close to a glitch we follow the parameteriza-
tion by Manchester and Taylor (1977). The angular velocity Ω = 2π/P, since
the glitch time t = tg, until the complete or partial recovery, can be described
as

Ω = Ω0(t) + ∆Ω[1 − Q(1 − e−(t−tg)/τd)] , (B.3.9)

where Ω0(t) = Ω0 + Ω̇(t − tg) is the normal evolution of the frequency in ab-

sence of glitch, being Ω0 the frequency prior to the glitch, ∆Ω = −2π∆P/P2

is the initial frequency jump, which can be decomposed in the persistent and
decayed parts, ∆Ωp and ∆Ωd respectively, τd is the timescale of the exponen-
tial decay of the frequency after the glitch and Q = ∆Ωd/∆Ω = 1−∆Ωp/∆Ω

is the recovery fraction or “healing parameter”. For full recovery we have
Q = 1, Ω(t >> τd) = Ω0, and for zero recovery Q = 0, Ω(t >> τd) =
Ω0(t) + ∆Ω. For simplicity we assume in the following and especially below
in Sec. B.3.6, complete recovery Q = 1.

This mechanism in white dwarfs is similar, although simpler, than the one
used to explain e.g. glitches in ordinary pulsars (see e.g. Baym and Pines,
1971; Shapiro and Teukolsky, 1983). The essential difference is that neutron
stars are composed by a superfluid core and a solid crust, being the latter the
place where starquakes can originate leading to glitches. A two-component
description is then needed, see e.g. Shapiro and Teukolsky (1983). In the
present case of a massive rotating white dwarf, such a two-component struc-
ture does not exist and the white dwarf behaves as a single solid system.
What is important to stress is that the rotational energy released for Q ≥ 1 is
largely sufficient for the explanation of the bursting phenomena, see Sec. B.3.6
for details.

The crystallization temperature of a white dwarf composed of nuclei (Z, A)
and mean density ρ̄ is given by (see e.g. Shapiro and Teukolsky, 1983; Usov,
1994)

Tcry ≃ 2.28 × 105 Z2

A1/3

(

ρ̄

106g/cm3

)1/3

K . (B.3.10)

Thus, assuming an internal white dwarf temperature ∼ 107 K we find
that the mean density for the crystallization of the white dwarf should be
∼ 2.2× 107 g/cm3 for 12C, ∼ 5.2× 106 g/cm3 for 16O and ∼ 1.25× 106 g/cm3

for 56Fe. Very massive white dwarfs as the ones we are considering here have
mean densities ∼ 109 g/cm3 and therefore a considerable fraction of their
size should be in principle solid at these high temperatures (see also Althaus
et al., 2005, 2007). It is worth to mention that, the phase separation of the
constituents of CO white dwarfs, theoretically expected to occur in the crys-
tallization process (see Garcia-Berro et al., 1988, for details), has been recently
observationally confirmed solving the puzzle of the age discrepancy of the
open cluster NGC 6791 (Garcı́a-Berro et al., 2010a).

Under these physical conditions, starquakes leading to glitches in the white
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dwarf may occur with a recurrence time (see e.g. Baym and Pines, 1971; Usov,
1994)

δtq =
2D2

B

|∆P|/P

|Ėrot|
, (B.3.11)

where Ėrot is the loss of rotational energy (B.3.5), D = (3/25) GM2
c /Rc , B =

0.33 (4π/3)R3
c e2Z2[ρ̄c/(Amp)]4/3, Mc, Rc and ρ̄c are the mass, the radius and

the mean density of the solid core, and mp is the proton mass.

For the specific case of 1E 2259+586, Usov predicted the possible existence
of changes of period ∆P/P ≈ −(1–3)× 10−6 with a recurrence time between
cracks δtq ≈ 7 × 106 |∆P| /P yr ≈ a few times (1–10) yr. It is impressive that

in 2002 indeed changes of the order of ∆P/P ≈ −4 × 10−6 were observed in
1E 2259+586 (Kaspi et al., 2003; Woods et al., 2004) (see Fig. B.14 for details).

Our aim in the following is to show that this model can be also applied
to the other SGRs and AXPs. Their entire energetics is explained by the ro-
tational energy loss of fast rotating magnetized white dwarfs: 1) the X-ray
luminosity is well below the rotational energy loss of the white dwarf (see
Fig. B.15); 2) in all cases the large magnetic field is well below the critical field
for vacuum polarization (see Fig. B.16 and Table B.9); 3) the energetics of all
the bursts can be simply related to the change of rotational energy implied by
the observed change of rotational period (see Fig. B.17, Sec. B.3.5 and Table
B.8).

B.3.3. SGRs and AXPs within the magnetar model

Let us turn to the alternative model commonly addressed as “magnetar” (see
e.g. Duncan and Thompson, 1992; Thompson and Duncan, 1995) based on
an ultramagnetized neutron star of M = 1.4M⊙ and R = 10 km and then
I ≈ 1045 g cm2 as the source of SGRs and AXPs. The limit of the magnetic
field obtained from Eq. (B.3.3) becomes

B = 3.2 × 1019
(

PṖ
)1/2

G , (B.3.12)

which is four orders of magnitude larger than the surface magnetic field
within the fast rotating magnetized white dwarf model (see Fig. B.18).

There are innumerous papers dedicated to this model and for a review
covering more than 250 references on the subject see Mereghetti (2008). The
crucial point is that in this model there is no role of the rotational energy of
the source: the X-ray luminosity is much bigger than the loss of rotational
energy of the neutron star (see Fig. B.19).

Paradoxically, although the bursts appear to be correlated to the presence
of glitches in the rotational period, the corresponding increase of change of
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rotational energy of the neutron star

∆ENS
rot = −2π2 I

P2

∆P

P
= −1.98 × 1046 ∆P

P3
erg , (B.3.13)

cannot explain the burst energetic ∼ (1044–1047) erg. This is a clear major
difference between the two models based respectively on neutron stars and
white dwarfs (see Figs. B.17 and B.20 for details).

In magnetars, the value of the rotational period and its first time derivative
are only used to establish an upper limit to the magnetic field of the neu-
tron star. In view of the smallness of the moment of inertia of a neutron star
with respect to the moment of inertia of a white dwarf, the magnetic field
reaches in many cases outstandingly large values B >> Bc ∼ 4.4 × 1013 G,
from here the name magnetars (see Fig. B.18). The attempt has been pro-
posed by Duncan and Thompson (1992) and Thompson and Duncan (1995)
to assume a new energy source in physics and astrophysics: the magnetic en-
ergy in bulk. The role of thermonuclear energy has been well established by
physics experiments on the ground as well as in astrophysics in the explana-
tion of the energetics, life time, and build-up process of the nuclear elements
in main sequence stars (see e.g. Bethe, 1968, and references therein); equally
well established has been the role of rotational energy in pulsars (see e.g.
Hewish, 1974; Bell and Hewish, 1967, and references therein); similarly well
established has been the role of gravitational energy in accretion process into
neutron stars and black holes and binary X-ray sources (see e.g. Giacconi,
2002; Giacconi and Ruffini, 1978 Reprinted 2010, and references therein). In
the magnetars instead, it is introduced an alternative primary energy source
not yet tested neither in the laboratory (the case of magnetic monopoles) nor
in astrophysics: a primary energy source due to overcritical magnetic fields.

The mostly qualitative considerations in the magnetar model can be sum-
marized, see e.g. Ng et al. (2010): in the twisted magnetosphere model of
magnetars (Thompson et al., 2002), the observed X-ray luminosity of a mag-
netar is determined both by its surface temperature and by magnetospheric
currents, the latter due to the twisted dipolar field structure. The surface tem-
perature in turn is determined by the energy output from within the star due
to magnetic field decay, as well as on the nature of the atmosphere and the
stellar magnetic field strength. This surface thermal emission is resonantly
scattered by the current particles, thus resulting in an overall spectrum sim-
ilar to a Comptonized blackbody (e.g. Lyutikov and Gavriil, 2006; Rea et al.,
2008; Zane et al., 2009). In addition, the surface heating by return currents
is believed to contribute substantially to LX , at least at the same level as the
thermal component induced from the interior field decay (Thompson et al.,
2002). Magnetar outbursts in this picture occur with sudden increases in twist
angle, consistent with the generic hardening of magnetar spectra during out-
bursts (e.g. Kaspi et al., 2003; Woods et al., 2004; Israel et al., 2007).
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It is worth to recall that magnetic field configurations corresponding to a
dipole twisted field have been routinely adopted in rotating neutron stars
(see e.g. Cohen et al., 1973). Magnetic field annihilation and reconnection
have been analogously adopted in solar physics (see e.g. Parker, 1957; Sweet,
1958) and also magnetic instabilities have been routinely studied in Tokamak
(see e.g. Coppi et al., 1976). These effects certainly occur in magnetized white
dwarfs. What is important to stress here is that in none of these systems
the magnetic field has been assumed to be the primary energy source of the
phenomena, unlike in magnetars.

It is appropriate to recall just a few of the difficulties of the magnetar model
in fitting observations, in addition to the main one of SGR 0418+5729 ad-
dressed in this article. In particular, e.g.: (1) as recalled by S. Mereghetti
2008, “up to now, attempts to estimate the magnetic field strength through
the measurement of cyclotron resonance features, as successfully done for ac-
creting pulsars, have been inconclusive”; (2) the prediction of the high-energy
gamma ray emission expected in the magnetars has been found to be incon-
sistent with the recent observation of the Fermi satellite (see e.g. Tong et al.,
2010, 2011); (3) finally, it has been shown to be not viable the attempt to relate
magnetars to the energy of the supernova remnants (see e.g. Allen and Hor-
vath, 2004; Ferrario and Wickramasinghe, 2006; Vink and Kuiper, 2006; Vink,
2008) or to the formation of black holes (see e.g. Kasen and Bildsten (2010);
Woosley (2010), see however e.g. Patnaude et al. (2009)) and of Gamma Ray
Bursts (see e.g. Levan et al. (2006); Castro-Tirado et al. (2008); Stefanescu et al.
(2008); Bernardini et al. (2009), see however e.g. Goldstein et al. (2011); Rea
et al. (2011)).

In Table B.9 we compare and contrast the parameters of selected SGRs and
AXPs sources in the magnetar model and in the fast rotating highly mag-
netized white dwarf model: the larger radius of a white dwarf with respect
to the radius of a neutron star of the same mass M = 1.4M⊙, leads to the
two models differing on the scale of mass density, moment of inertia, and ro-
tational energy which imply a different scale for the surface magnetic fields,
leading to a very different physical interpretation of the observations of SGRs
and AXPs.

B.3.4. Observations of massive fast rotating highly
magnetized white dwarfs

Some general considerations are appropriate. The white dwarf model ap-
peals to standard and well tested aspects of physics and astrophysics. The
observation of fast rotating white dwarfs with magnetic fields larger than 106

G all the way up to 109 G has been in the mean time solidly confirmed by
observations (see e.g Angel et al., 1981; Ferrario et al., 1997; Należyty and
Madej, 2004; Ferrario and Wickramasinghe, 2005; Terada et al., 2008c). For a
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recent and extensive analysis of the magnetic field structure of highly mag-
netized white dwarfs see Külebi et al. (2009) and for a catalog of them see
Külebi et al. (2010a) and also Kepler et al. (2010).

A specific example is the highly magnetized white dwarf AE Aquarii. The
rotational period of this fast rotating magnetized white dwarf obtained from
the sinusoidal pulsed flux in soft X-rays < 4 keV (see e.g. Eracleous et al.,
1991; Choi and Dotani, 2006) has been established to be P = 33 s and it is
spinning down at a rate Ṗ = 5.64 × 10−14. The mass of the white dwarf is
∼ M⊙ (de Jager et al., 1994) and the observed temperature is kT ∼ 0.5 keV. In
addition to the soft X-ray component, hard X-ray pulsations were observed
with the Japanese satellite Suzaku in October-November 2005 and October
2006. The luminosity of AE Aquarii ∼ 1031 erg/s accounts for the 0.09% of
the spin-down energy of the white dwarf (see Terada et al., 2008c, for details)
and the infereed magnetic field of the source is B ∼ 108 G (Ikhsanov and
Beskrovnaya, 2008).

This white dwarf is one of the most powerful particle accelerators: there
is at least one event of detected TeV emission from this source during its
optical flaring activity monitored between 1988 and 1992 (see e.g. Meintjes
et al., 1992, 1993; de Jager et al., 1994; Ikhsanov and Biermann, 2006; Ikhsanov
and Beskrovnaya, 2008; Kashiyama et al., 2011). In addition, it shows burst
activity in X-rays (Terada et al., 2008c). Although AE Aquarii is a binary
system with orbital period ∼ 9.88 hr (see de Jager et al., 1994, e.g.), very
likely the power due to accretion of matter is inhibited by the fast rotation of
the white dwarf (e.g. Itoh et al., 2006; Terada et al., 2008c).

Many of the observed physical properties of this white dwarf are very sim-
ilar to the recently discovered SGR 0418+5729, as we explicitly show in Table
B.7.

Although very fast, AE Aquarii is not the fastest white dwarf observed.
The rotational period obtained from the pulsed X-ray emission of RXJ 0648.0-
4418, the white dwarf in the binary system HD49798/RXJ 0648.0-4418, is P =
13.2 s (Israel et al., 1997). This white dwarf is one of the most massive white
dwarfs with M = 1.28 ± 0.05M⊙ (see Mereghetti et al., 2009, for details).
Other very massive and highly magnetized white dwarfs are: REJ 0317-853
with M ∼ 1.35M⊙ and B ∼ (1.7–6.6)× 108 G (see e.g. Barstow et al., 1995;
Külebi et al., 2010b); PG 1658+441 with M ∼ 1.31M⊙ and B ∼ 2.3 × 106 G
(see e.g. Liebert et al., 1983; Schmidt et al., 1992); and PG 1031+234 with the
highest magnetic field ∼ 109 G (see e.g. Schmidt et al., 1986; Külebi et al.,
2009). It is interesting to note that the most highly magnetized white dwarfs
are massive as well as isolated (see e.g. Należyty and Madej, 2004, for details).
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SGR 0418+5729 AE Aquarii

P (s) 9.08 33.08

Ṗ (10−14) < 0.6 5.64

Age (Myr) 24 9.4

LX (erg/s) 6.2 × 1031 ∼ 1031

kT (keV) 0.67 0.5

B (G) < 7.45 × 108 ∼ 108

Pulsed Fraction 0.3 ∼ 0.2–0.3

Table B.7.: Comparison of the observational properties of SGR 0418+5729 and
the white dwarf AE Aquarii. For SGR 0418+5729 P, Ṗ, and LX have been
taken from Rea et al. (2010). The characteristic age is given by Age = P/(2Ṗ)
and the surface magnetic field B is given by Eq. (B.3.4). The pulsed fraction
of SGR 0418+5729 is taken from Esposito et al. (2010) and the one of the white
dwarf AE Aquarii from Eracleous et al. (1991) and Choi and Dotani (2006).

B.3.5. Rotational instability of white dwarfs

In order to be stable against secular instability of the MacClaurin versus the
Jacobi ellipsoid (Ferrari and Ruffini, 1969), the minimal period of a white
dwarf with the parameters discussed here is Pcrit ∼ 0.94 s. For P . Pcrit

we would expect very significant emission of gravitational waves due to the
transition from the triaxial Jacobi ellipsoids to the axially symmetric Mac-
Claurin ellipsoids. This is well in agreement and explains the observed long
periods of SGRs and AXPs & 2 s (see Fig. B.21). In the specific case of the
source 1E 2259+586, assuming that the supernova remnant G109.1-1.0 and
1E 2259+586 are coeval, we obtain the initial rotational period of the white
dwarf in the range 0.94 s < P0 < 6.8 s where, the lower limit, is given by the
bifurcation point between MacClaurin spheroids and Jacobi ellipsoids (see
e.g. Ferrari and Ruffini, 1969) and, the upper limit, is obtained for a constant
value of Ṗ. Describing today 1E 2259+586 by a MacClaurin spheroid, we
obtain the ratio between the rotational energy and the gravitational energy
Erot/

∣

∣Egrav

∣

∣ ∼ 0.011 (see Fig. B.21), well below the secular instability ∼ 0.14
and the dynamical instability ∼ 0.25 (see Chandrasekhar, 1969; Shapiro and
Teukolsky, 1983, for details).

The above considerations add interest in the recent theoretical analysis
of white dwarfs taking into account nuclear, weak and electromagnetic in-
teractions within a general relativistic treatment (Rotondo et al., 2011b). A
specially relevant result has been recently obtained (Boshkayev et al., 2011)
by analyzing a white dwarf endowed with mass, angular momentum, and
quadrupole moment within the Hartle-Thorne formalism (Hartle, 1967b; Har-
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tle and Thorne, 1968b). The rotating white dwarfs have been studied for the
new equation of state given by Rotondo et al. (2011c) used for the construc-
tion of the non-rotating configurations by Rotondo et al. (2011b). The critical
rotational periods for the onset of the axisymmetric, the mass-shedding and
the inverse β-decay instabilities have been studied in detail. The exact value
of the critical period of a white dwarf depends upon the central density of
the configuration; rotationally stable white dwarfs exist for rotational peri-
ods P > PWD

min ∼ 0.3 s. The shortest values for configurations supported by
rotation with critical masses larger than the classical Chandrasekhar limit for
non-rotating white dwarfs all the way up to Mmax ∼ 1.5M⊙ (see Boshkayev
et al., 2011, for details).

Consequently, also the fastest sources e.g. 1E 1547.0-5408 with P = 2.07 s,
SGR 1627-41 with P = 2.59 s, and PSR J 1622-4950 with P = 4.33 s, can be
safely described as massive fast rotating white dwarfs as shown in Fig. B.15.

B.3.6. Glitches and outbursts in SGRs and AXPs

The energetic of the observed bursts within the white dwarf model of SGRs
and AXPs can be fully explained by the observed change of period ∆P < 0
(glitches). In the case of the famous event of 5th March 1979 in the SGR 0526-
66 (P = 8.05 s), a fractional change of period of the white dwarf ∆P/P ∼
−10−4 (see Fig. B.17) would be sufficient to explain the energetics ∼ 3.6× 1044

erg (Mereghetti, 2008). Unfortunately, such a change of period could not be
observed at the time (see e.g. Mazets et al., 1979), lacking the observations of
the source prior to the event. Instead, in the case of the flares of 1E 2259+586
on June 2002 (P = 6.98 s) and of 1E 1048.1-5937 (P = 6.45 s) on March 2007,
observational data are available. For 1E 2259+586, using the observed frac-
tional change of period ∆P/P ∼ −4 × 10−6 (Woods et al., 2004) (see also
Fig. B.14), we obtain within the white dwarf model a change of rotational
energy

∣

∣∆EWD
rot

∣

∣ ∼ 1.7 × 1043 erg, to be compared with the measured energy

released during the event ∼ 3 × 1041 erg. For the glitch on the 26th March
2007 in 1E 1048.1-5937 with observed ∆P/P ∼ −1.63 × 10−5, we obtain
∣

∣∆EWD
rot

∣

∣ ∼ 7.73 × 1043 erg which is strikingly in agreement (and safely supe-

rior) with the observed energy released in the event 4.3× 1042 erg (see e.g. Dib
et al., 2009). In the case of super giant flares, there is no clear observational
evidence of their association to glitches. However, changes in the moment of
inertia of the white dwarf originating fractional changes of period of order
∆P/P ∼ −(10−5 − 10−3) (see Fig. B.17) could explain their large energetics
ranging from 1044 erg all the way up to 1047 erg (see e.g. Mereghetti, 2008).
For the giant flare of SGR 1806-20 on 27th December 2004 (see e.g. Borkowski
et al., 2004; Hurley et al., 2005) with observed energy ∼ 1046 erg there is a
gap of timing data of the source between October 2004 and March 2005 (see
Mereghetti et al., 2005; Tiengo et al., 2005). The observed rotational period of
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SGR 0526-66 1E 2259+586 1E 1048.1-5937 SGR 1806-20
Date March 1979 June 2002 March 2007 December 2004

Observed Energy (erg) 3.6 × 1044 3 × 1041 4.2 × 1042 ∼ 1046

|∆P|/P 1.2 × 10−4 (predicted) 4.24 × 10−6 (observed) 1.63 × 10−5 (observed) 3 × 10−3 (predicted)

Predicted Energy (erg) 3.6 × 1044 1.7 × 1043 7.7 × 1043 ∼ 1046

Table B.8.: Glitches and Outbursts of some SGRs and AXPs within the white
dwarf model. The predicted values of |∆P|/P are calculated with Eq. (B.3.8)
assuming

∣

∣∆EWD
rot

∣

∣ equals the observed energy of the burst event. The pre-
dicted values of the energy released in the burst event is calculated with
Eq. (B.3.8) using the observed fractional change of rotational period |∆P|/P.

SGR 1806-20 after March 2005 is not consistent with the expected rotational
period obtained from the spin-down rate Ṗ = 5.5 × 10−10; instead, this is
consistent with Ṗ = 1.8× 10−10. The change of rotational period has been at-
tributed to “global reconfigurations of the neutron star magnetosphere” (see
e.g. Tiengo et al., 2005). Within the white dwarf model, such a burst activity
is consistent with a glitch with fractional change of period ∼ −3 × 10−3. All
the above discussion is summarized in Table B.8 and Figs. B.14 and B.17.

In all the above cases the gain of rotational energy in the glitch is much
larger than the energy observed in the flaring activities following the glitches.
This means that there is ample room to explain these glitch-outburst events
in a large range of recovery fractions Q. It appears to be appropriate to sys-
tematically monitor the Q factors for all the glitches in SGRs and AXPs.

It is interesting that PSR J1846-0258, P = 0.3 s, experienced in June 2006 a
radiative event with estimated isotropic energy ∼ (3.8–4.8)× 1041 erg (Ku-
mar and Safi-Harb, 2008). Assuming that such an event was triggered by a
glitch in the neutron star one obtains an associated fractional change of pe-
riod ∆P/P ∼ −(1.73–2.2)× 10−6, as given by Eq. (B.3.13). Indeed, as shown
by Kuiper and Hermsen (2009), the outburst emission was accompanied by a
large glitch ∆P/P ∼ −(2.0–4.4)× 10−6 in perfect agreement with the theoret-
ical prediction given by the loss of rotational power after the spin-up of the
neutron star without advocate any magnetar phenomena. This fact reinforces
the idea that PSR J1846-0258 is not a magnetar but an ordinary rotationally
powered neutron star, also in line with the recent suggestions by Kuiper and
Hermsen (2009) and Rea et al. (2010).

B.3.7. Magnetosphere emission from white dwarfs

We return now to the structure of the magnetosphere of the white dwarf
model for SGRs and AXPs. In order to have an agreement between the ob-
served X-ray luminosity and the X-ray spectral distribution, it is necessary
that only a part of the surface of the white dwarf has to be X-ray emitter.

1467



B. White Dwarfs Physics and Astrophysics

We can define the dimensionless filling factor

R =
LX

4πR2σT4
, (B.3.14)

where σ is the Stefan-Boltzmann constant and T the temperature of the source.
This factor gives an estimate of the effective area of X-ray emission and con-
sequently information about the structure of the magnetic field from the sur-
face of the object. It is interesting that this factor for the white dwarf is in
the range 10−6–10−5 (see Table B.9), quite similar to the one of the Sun R⊙ =
LX
⊙/(4πR2

⊙σT4
⊙) ≈ (7.03× 10−8–1.2× 10−6) in the minimum LX

⊙ = 2.7× 1026

erg/s and in the maximum LX
⊙ = 4.7× 1027 erg/s of solar activity respectively

(see e.g. Peres et al., 2000; Judge et al., 2003). This should be expected by the
general argument of the conservation of flux in the transition from a highly
magnetized main sequence star to a white dwarf. The magnetic field of the
order of ∼ 109 G on the surface of these white dwarfs must clearly have a
filamentary structure in the range R ∼ 10−6–10−5.

In the specific case of SGR 0418+572 such an R factor is ∼ 10−9, which is of
the same order as the one of the white dwarf AE Aquarii, as can be seen from
Table B.7 by comparing the values of LX and KT, which are the quantities
involved in Eq. (B.3.14).

At times the presence of an R factor has been interpreted as originating
from a spot-like radial emission of the radiation from the surface of the white
dwarf. If one were to assume that the radiation occurs radially beamed and
occurring just from the surface either of the neutron star or the white dwarf,
a spot radiation would lead to a pulsed fraction of the emission flux deter-

mined by
√

1/n ∑
n
i=1(yi − ȳ)2/ȳ ∼ 1, where n is the number of phase bins

per cycle, yi is the number of counts in the ith phase bin and ȳ is the mean
number of counts in the cycle (see e.g. Esposito et al., 2010, for details about
this definition). This problem, which seems to be in contradiction with the
observations of pulsed fractions < 1 in SGRs and AXPs (see e.g. Esposito
et al., 2010), would be equally severe both for neutron stars and white dwarfs
(see e.g. Table B.7).

It is appropriate to recall that all the SGRs and AXPs within a rotating white
dwarf model have magnetic fields in the range 108 G . B . 1011 G (see
Table B.9). It is quite natural to assume that the X-ray emission be linked
to the presence of the magnetic field. It is worth to note that the modeling
of the physics and the geometrical structure of the magnetic field and of the
magnetospheres is a most active field field of current research. As shown by
Romani and Watters (2010), the morphology of the pulses as well as of the
light curves strongly depend on many model parameters, e.g. special and
general relativistic effects, the viewing angle, the magnetic moment-spin axis
angle, the spin axis-line of sight angle, the specific location of the emission
zone, and the adopted magnetospheric model including possible corrections
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due to deviations from a pure dipolar structure.
From the broad sinusoidal pulsed flux of SGRs/AXPs (see e.g. Mereghetti,

2008), we know that the pulsed fraction is less than one and that the luminos-
ity differs remarkably from a spiky one. We find then natural to assume that
the emission comes from an area covering the white dwarf surface with a very
marked filamentary structure. Similar considerations for neutron stars mag-
netospheres have been purported e.g. by Michel and Dessler (1981); Michel
(1983) giving evidence of magnetospheric activity from the pole all the way
up to the equator; see also the most interesting case of the pair production
activities in the magnetosphere of a rotating white dwarf considered for the
transient radio source GCRT J1745–3009 by Zhang and Gil (2005). Moreover,
such structures are regularly observed in the Sun and in the Earth Aurora.
Explicit sinusoidal pulsed flux in soft X-rays (< 4 keV) have been observed
in AE Aquarii (see e.g. Eracleous et al., 1991; Choi and Dotani, 2006); and see
also Fig. 6 in Mereghetti et al. (2011) for similar sinusoidal pulsed emission
of the white dwarf RXJ 0648.0-4418 with rotational period P = 13.2 s. For
all the above sources, a filamentary structure of the magnetic field is clearly
expected.

We do not discuss here the issue of the spectral features within the white
dwarf model. The aim of this article is just to point out that all these problems
can be address with merit starting from the rotational energy of a rotating
white dwarf rather than the magnetic energy of a magnetar. The spectrum
of the persistent emission of SGRs and AXPs for energies < 10 keV is well
fitted either by the superposition of a blackbody and a high energy tail or by
a single blackbody or a double blackbody (see e.g. Mereghetti, 2008). Such
a spectral feature is clearly already evidenced for rotating white dwarfs; fol-
lowing the work of Terada et al. (2008c): in addition to the thermal mod-
ulation in the softer X-ray band, spiky pulsations like the ones of pulsars
have been observed by the Suzaku satellite in the hard X-ray band of over
4 keV in the white dwarf AE Aquarii. The X-ray spectrum requires an ad-
ditional hard X-ray component on the well-known thermal emissions with
temperatures of 0.5 and 2.9 keV. Combined with results from timing analy-
ses, spectral shapes and flux, it was there concluded that the hard X-ray pul-
sations should have a non-thermal origin, for example, possible Synchrotron
emission with sub MeV electrons. The claim of the first discovery of a white
dwarf equivalent to a neutron star pulsar was there made. In view of the
possible evidence of very high energy emission in the TeV region observed
during the optical flares of AE Aquarii (see e.g. de Jager et al., 1994; Ikhsanov
and Biermann, 2006; Ikhsanov and Beskrovnaya, 2008; Terada et al., 2008c,d;
Kashiyama et al., 2011, and references therein), it would be important to have
observations by INTEGRAL and Fermi of rotating magnetized white dwarf
in the 20-200 keV band in order to establish further analogies between fast
rotating highly magnetized white dwarfs and magnetar candidates.

More specifically, for the source SGR 0418+5729 and its interpretation as
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a white dwarf, a crucial result has been recently obtained by Durant et al.
(2011). We first recall the observed range of temperatures of massive isolated
white dwarfs 1.14 × 104 K ≤ T ≤ 5.52 × 104 K; see Table 1 in (Ferrario et al.,
2005). From the broad band Hubble Space Telescope imaging of the field
of SGR 0418+5729, the upper limits of the black body surface temperature,
T < 3.14 × 104 K and T < 1.18 × 104 K in the F110W and F606W filters,
can be established for a radius R = 108 cm. In this respect is also worth to
recall the optical observations of AXP 4U0142+61 of Hulleman et al. (2000).
The photometric results of the field of 4U0142+61 at the 60-inch telescope on
Palomar Mountain are in agreement with a 1.3M⊙ white dwarf with a surface
temperature ∼ 4× 105 K (see Hulleman et al., 2000, for details). These results
are therefore fully consistent with the SGR/AXP white dwarf model, and
follow-on missions of Hubble and VLT are strongly recommended.

B.3.8. The connection with supernova remnants

We would like to address the special issue of the supernova remnants ener-
getics and their association with SGRs and AXPs. A firm association between
SGRs/AXPs and supernovae have been purported by Gaensler et al. (2001)
in the cases 1E 1841–045 (SNR G27.4+0.0, Kes 73), AX J1845.0–0258 (SNR
G29.6+0.1), and 1E 2259+586 (SNR G109.1–1.0, CTB 109). See also Gelfand
and Gaensler (2007) for the possible association 1E 1547.0-5408 (SNR G327.24-
0.13). What is of interest for us here is the special issue of the energetics of the
supernova remnant and the present of an SGR or an AXP.

Paczynski, in the case of AXP 1E 2259+586, attempted to explain the su-
pernova remnant by assuming a merger of a binary system of ordinary white
dwarf of mass ∼ (0.7–1)M⊙ based on models by Iben and Tutukov (1984)
and Paczynski (1985) leading both to the formation of a fast rotating white
dwarf and to the supernova remnant. Recent simulations of white dwarf-
white dwarf mergers (see e.g. Pakmor et al., 2010) point that mergers of (0.8–
0.9M⊙) produce supernova events generally not very efficient energetically,
well below the observed explosion energy ∼ 7.4 × 1050 erg of the supernova
remnant G109.1-1.0 associated to 1E 2259+586 (see e.g. Sasaki et al., 2004).

In the intervening years much more has been understood on the process
of gravitational collapse and on the composition of the material surrounding
neutron stars and black holes both from pulsar observations and Gamma Ray
Bursts. Fascinating evidence for the presence of planets around pulsars in su-
pernova remnants has been established (see e.g. Konacki et al., 1999; Hansen,
2002; Konacki and Wolszczan, 2003). Similarly, the presence of many body
process of gravitational collapse has been evidenced for Gamma Ray Bursts
(see e.g. Ruffini, 2009).

In view of the above, we advance the possible scenario in which the SGRs/AXPs
and the supernova remnant originate from a very close binary system com-
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posed of a white dwarf and a companion late evolved star, close to the pro-
cess of gravitational collapse. The collapse of the companion star, either to
a neutron star or to a black hole, leads to mass loss which can unbind the
original binary system. Three possible cases can occur (see e.g. Ruffini, 1973):
if the loss of mass in the supernova explosion is Mloss < M/2, being M the
total mass of the binary, the system holds bound; 2) if Mloss ∼ M/2 then the
system becomes unbound and the white dwarf is expelled at nearly orbital
motion velocity; and 3) if Mloss >> M/2 the white dwarf is kicked out with
very high runaway velocities. Only in the first case the object will lie at the
center of the supernova remnant. For a review on the evolution of binary sys-
tems see Stairs (2004) and for a detailed treatment of the problem of runaway
velocities from supernova explosions see Tauris and Bailes (1996); Tauris and
Takens (1998). The white dwarf in this picture does not participate either to
the gravitational collapse nor to the formation of the supernova remnant: it
can have a period and a life time determine essentially by the prior evolution
of the binary system. This explains the disagreement between the age of the
supernova remnant and the characteristic age of the SGR/AXP when inferred
by a neutron star model. In the case of large kick velocities the runaway white
dwarf can collide with the surrounding material in the supernova remnant
and very likely also with planets. Such collisions may well originate changes
in the moment of inertia of the white dwarf, consequently in its rotational
period, leading to glitches and burst activity.

In the above context it is appropriate to recall the pioneering work of Katz
(1996) on explaining the super-Eddington luminosities in the flaring episodes
of SGRs and AXPs as originating in accretion process of planetary fragments,
in particular, the important role of magnetic confinement of an e+e− pair
plasma. The model explains the observed self-absorbed thermal spectrum
of flares and their nearly independence on their luminosity. Katz (1996) has
shown that the infall of planetary fragments may lead to a continuous injec-
tion of energy to the magnetosphere which leads to magnetic confinement of
the source if the magnetic field satisfies

B >

√

2L

cR2
= 2.6 × 107

√

L41

R2
8

G , (B.3.15)

where L41 is the luminosity in units of 1041 erg/s and R8 is the radius of the
source in units of 108 cm.

In the case when the radiation is not being continuously resupplied, but it
is initially contained within the volume ∼ 4πR3/3, the minimum magnetic
field for confinement is given by

B >

√

6Lτ

R3
= 2.45× 108

√

L41τ0.1

R3
8

G , (B.3.16)
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where τ0.1 is the time τ during which the source is radiating at a luminosity
L, in units of 0.1 s. The fiducial values for L and for τ has been chosen here to
be typical of the bursting activity of SGRs/AXPs (see e.g. Mereghetti, 2008).
The above two bounds for the magnetic field are indeed in line with the sur-
face magnetic fields obtained in this paper; see Fig. B.16 for details. Thus,
the super-Eddington luminosities observed in the outbursts can be well ex-
plained within the white dwarf model and there is no need of introducing
the huge magnetic fields of the magnetar model (Paczynski, 1992; Thompson
and Duncan, 1995).

B.3.9. On the fiducial neutron star and white dwarf
parameters in light of recent theoretical progress

Before concluding, we would like to introduce a word of caution on the fidu-
cial values adopted both for the neutron star and the white dwarf in the above
Sections. In the intervening years much more have been learned on the equa-
tion of state and on a more complex description of the structure parameters
of both white dwarfs and neutron stars.

The equations of equilibrium of neutron stars, traditionally based on the
Tolman-Oppenheimer-Volkoff equations, have been superseded by an alter-
native formulation based on the general relativistic Thomas-Fermi conditions
of equilibrium within the Einstein-Maxwell equations Rueda et al. (2011).

Correspondingly, the above values of
√

I/R6 in Eq. (B.3.3) estimated int he
fiducial parameters, leading to Eq. (B.3.12), can acquire in fact values in the

range 0.44 .
√

I/R6/
√

I f /R6
f . 0.56, where the subscript ‘f’ stands for

fiducial parameter. This range corresponds to the range of masses 0.5 .
M/M⊙ . 2.6 (Belvedere et al., 2011). Correspondingly, the magnetic field
is in the range 0.44 . B/BNS

f . 0.56, where BNS
f is given by Eq. (B.3.12).

Similar considerations apply for the white dwarf case. General relativistic
white dwarfs taking into account nuclear, weak and electromagnetic inter-
actions have been recently constructed (Rotondo et al., 2011b) following the
new equation of state for compressed nuclear matter given by Rotondo et al.
(2011c). The case of rotating white dwarfs in general relativity has been stud-
ied by Boshkayev et al. (2011). It has been found that white dwarfs can be
as fast as PWD

min ∼ 0.3 s and as massive as Mmax ∼ 1.5M⊙; see Sec. B.3.5
for details. For example, a white dwarf of M = 1.44M⊙ rotating with pe-
riod P = 3.2 s, will have an equatorial radius Req ∼ 3604 km, polar radius

Rp ∼ 2664 km, and moment of inertia I ∼ 2.9 × 1049 g cm2. In this case we

will have
√

I/R6/
√

I f /R6
f ∼ 0.01 and therefore B/BWD

f ∼ 0.01 where BWD
f

is given by Eq. (B.3.4).
This issue is particularly relevant to the study of the four sources in Fig. B.19.

These sources can be definitely explained within a unified framework of ro-
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tating white dwarfs with all the other SGRs and AXPs. In view of the pa-
rameters recently obtained they may be also interpreted as regular neutron
stars with a barely critical magnetic field. For these sources an option remain
open for their interpretation as white dwarfs or neutron stars. A more refined
analysis will clarify the correctness of the two possible interpretations both,
in any case, alternative to the magnetar model.

B.3.10. Conclusions and remarks

The recent observations of the source SGR 0418+5729 cast a firm separatrix in
comparing and contrasting the two models for SGRs and AXPs based respec-
tively on an ultramagnetized neutron star and on a white dwarf. The limit
on the magnetic field derived in the case of a neutron star B = 7.5 × 1012

G makes it not viable as an explanation based on the magnetar model both
from a global energetic point of view and from the undercritical value of the
magnetic field. In the white dwarf model, the picture is fully consistent. It
is interesting that the rotational energy loss appears to approach the value of
the observed X-ray luminosity with time (see Fig. B.22) as the magnetospheric
activity settles down.

The description of SGR 0418+5729 as a white dwarf predicts the lower limit
of the spin-down rate Ṗ given by Eq. (B.3.2), the surface magnetic field field
is, accordingly to Eq. (B.3.4), constrained by 1.05 × 108 G < BSGR0418+5729 <

7.47 × 108 G (see Fig. B.16). The campaign of observations launched by the
Fermi and Agile satellites will address soon this issue and settle in the near
future this theoretical prediction.

The characteristic changes of period ∆P/P ∼ −(10−7–10−3) and the re-
lating bursting activity ∼ (1041–1046) erg in SGRs and AXPs can be well
explained in term of the rotational energy released after the glitch of the
white dwarf. It is also appropriate to recall that fractional changes, on scales
|∆P|/P . 10−6 are also observed in pulsars and routinely expressed in terms
of the release of rotational energy of the neutron star, without appealing to
any magnetars phenomena; e.g. the glitch/outburst activity experienced in
June 2006 by PSR J1846-0258 (see Sec. B.3.7) and the most recent event ob-
served in the prototypical Crab pulsar B0531+21 in the Crab nebula (see e.g.
Tavani, 2011; Fermi-LAT Collaboration, 2010).

The observation of massive fast rotating highly magnetized white dwarfs
by dedicated missions as the one leadered by the X-ray Japanese satellite
Suzaku (see e.g. Terada et al., 2008c) has led to the confirmation of the ex-
istence of white dwarfs sharing common properties with neutron star pul-
sars, hence their name white dwarf pulsars. The theoretical interpretation of
the high-energy emission from white dwarf pulsars will certainly help to the
understanding of the SGR and AXP phenomena (see e.g. Kashiyama et al.,
2011).
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We have given evidence that all SGRs and AXPs can be interpreted as rotat-
ing white dwarfs providing that the rotational period satisfies P > PWD

min ∼ 0.3
s. The white dwarf generate their energetics from the rotational energy and
therefore there is no need to invoke the magnetic field decay of the magnetar
model.

Concerning the rotational period of SGRs and AXPs, it becomes interest-
ing to confront our general relativistic results on uniformly rotating white
dwarfs (Boshkayev et al., 2011) with the interesting work of Ostriker and Bo-
denheimer (1968) on differentially rotating Newtonian white dwarfs.

Regarding magnetized white dwarfs, the coupling between rotation and
Rayleigh-Taylor instabilities arising from chemical separation upon crystal-
lization may have an important role in the building of the magnetic field of
the white dwarf Garcia-Berro et al. (2011).
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SGR 1806-20 SGR 0526-66 SGR 1900+14 SGR 0418+5729
P (s) 7.56 8.05 5.17 9.08

Ṗ(10−11) 54.9 6.5 7.78 < 6.0 × 10−4

Age (kyr) 2.22 1.97 1.05 24.0 × 103

LX(1035 erg/s) 1.50 2.1 1.8 6.2 × 10−4

kT (kev) 0.65 0.53 0.43 0.67

ĖWD
rot (1037 erg/s) 50.24 4.92 22.24 3.2 × 10−4

BWD(109 G) 206.10 73.18 64.16 0.75

RWD(10−5) 0.65 2.06 4.07 2.4 × 10−4

ĖNS
rot (1035 erg/s) 0.502 0.05 0.22 3.2 × 10−6

BNS(1014 G) 20.61 7.32 6.42 0.075

RNS 0.065 0.21 0.41 2.4 × 10−5

1E 1547-54 1E 1048-59 1E 1841-045 1E 2259+586
P (s) 2.07 6.45 11.78 6.98

Ṗ(10−11) 2.32 2.70 4.15 0.048

Age (kyr) 1.42 3.79 4.50 228.74

LX(1035 erg/s) 0.031 0.054 2.2 0.19

kT (kev) 0.43 0.62 0.38 0.41

ĖWD
rot (1037 erg/s) 103.29 3.97 1.01 0.056

BWD(109 G) 22.17 42.22 70.71 5.88

RWD(10−5) 0.07 0.028 8.16 0.49

ĖNS
rot (1035 erg/s) 1.03 0.040 0.010 5.62× 10−4

BNS(1014 G) 2.22 4.22 7.07 0.59

RNS 0.007 0.0028 0.82 0.049

Table B.9.: SGRs and AXPs as white dwarfs and neutron stars. The ro-
tational period P, the spin-down rate Ṗ, the X-ray luminosity LX and
the temperature T have been taken from the McGill online catalog at
www.physics.mcgill.ca/∼pulsar/magnetar/main.html. The characteristic
age is given by Age = P/(2Ṗ), the loss of rotational energy Ėrot is given
by Eqs. (B.3.5) and Eq. (B.3.1) and the surface magnetic field is given by
Eqs. (B.3.4) and (B.3.12) for white dwarfs and neutron stars respectively. The
filling factor R is given by Eq. (B.3.14).
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Figure B.14.: Timing analysis of the glitch of 1E 2259+586 on June 2002 (taken
from Woods et al., 2004). The vertical axis shows the evolution of the spin fre-
quency and the horizontal axis the date time. The observed fractional change
of period is ∆P/P = −∆Ω/Ω ∼ −4× 10−6 and the observed energy released
during the event is ∼ 3 × 1041 erg (Woods et al., 2004). Within the white
dwarf model from such a ∆P/P we obtain ∆EWD

rot ∼ 1.7 × 1043 erg as given
by Eq. (B.3.8). We have modified the original figure (Woods et al., 2004) by
indicating explicitly where the rotational energy is released after the spin-up,
recovering its initial period prior to the glitch by the emission of a sequence
of bursts on time scales from months to years (see e.g. Mereghetti, 2008).
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Figure B.15.: X-ray luminosity LX versus the loss of rotational energy Ėrot

describing SGRs and AXPs by rotation powered white dwarfs. The green
star and the green triangle correspond to SGR 0418+5729 using respectively
the upper and the lower limit of Ṗ given by Eq. (B.3.2). The blue squares are
the only four sources that satisfy LX < Ėrot when described as neutron stars
(see Fig. B.19 for details).
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Figure B.16.: Ṗ-P diagram for all known SGRs and AXPs. The curves of con-
stant magnetic field for white dwarfs given by Eq. (B.3.4) are shown. The
blue dashed line corresponds to the critical magnetic field Bc = m2

e c3/(eh̄).
The green star and the green triangle correspond to SGR 0418+5729 using re-
spectively the upper and the lower limit of Ṗ given by Eq. (B.3.2). The blue
squares are the only four sources that satisfy LX < Ėrot when described as
rotation powered neutron stars (see Fig. B.19 for details).
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Figure B.17.: Change in the rotational energy of the white dwarf ∆EWD
rot given

by Eq. (B.3.8) as a function of the rotational period P in seconds for selected
fractional changes of period ∆P/P.
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Figure B.18.: Ṗ-P diagram for all known SGRs and AXPs. The curves of con-
stant magnetic field for neutron stars given by Eq. (B.3.12) are shown. The
blue dashed line corresponds to the critical magnetic field Bc = m2

e c3/(eh̄).
The green star corresponds to SGR 0418+5729 using the upper limit of Ṗ
given by Eq. (B.3.2). The blue squares are the only four sources that satisfy
LX < Ėrot when described as rotation powered neutron stars (see Fig. B.19
for details).
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Ė
N
S

ro
t

Figure B.19.: X-ray luminosity LX versus the loss of rotational energy Ėrot

describing SGRs and AXPs as neutron stars. The green star corresponds to
SGR 0418+5729 using the upper limit of Ṗ given by Eq. (B.3.2). The blue
squares are the only four sources with LX < Ėrot: 1E 1547.0-5408 with P =
2.07 s and Ṗ = 2.3× 10−11; SGR 1627-41 with P = 2.59 s and Ṗ = 1.9× 10−11;
PSR J 1622-4950 with P = 4.33 s and Ṗ = 1.7 × 10−11; and XTE J1810–197
with P = 5.54 s and Ṗ = 7.7 × 10−12.
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Figure B.20.: Change in the rotational energy of the neutron star ∆ENS
rot given

by Eq. (B.3.13) as a function of the rotational period P in seconds for selected
fractional changes of period ∆P/P.

1482



B.3. SGRs and AXPs as rotation powered massive white dwarfs

2 4 6 8 10 12

P (s)

0.002

0.005

0.010

0.020

0.050

0.100

R
o
ta
ti
o
n
a
l
E
n
er
g
y

G
ra
v
it
a
ti
o
n
a
l
E
n
er
g
y

Figure B.21.: Ratio between the rotational energy and the gravitational en-
ergy of a MacClaurin spheroid of M = 1.4M⊙ and R = 103 km as a function
of its rotational period P. The rotational period between 2 and 12 s appears to
be very appropriate for fast rotating white dwarfs. Fast rotating neutron stars
present much shorter period in the millisecond region. We show on the curve
the position of all known SGRs and AXPs. The green star corresponds to SGR
0418+5729. The blue squares are the only four sources that satisfy LX < Ėrot

when described as rotation powered neutron stars (see Fig. B.19 for details).
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Figure B.22.: Ratio between the observed X-ray luminosity LX and the loss of
rotational energy Ėrot describing SGRs and AXPs by rotation powered white
dwarfs. The green star and the green triangle correspond to SGR 0418+5729
using respectively the upper and the lower limit of Ṗ given by Eq. (B.3.2). The
blue squares are the only four sources that satisfy LX < Ėrot when described
as rotation powered neutron stars (see Fig. B.19 for details).
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C. Neutron Stars Physics and
Astrophysics

C.1. The self-consistent general relativistic

solution for a system of degenerate neutrons,

protons and electrons in β-equilibrium

C.1.1. Introduction

The insurgence of critical electric fields in the process of gravitational collapse
leading to vacuum polarization process (Ruffini et al., 2010b) has convinced
us of the necessity of critically reexamining the gravitational and electrody-
namical properties in neutron stars. In this light we have recently gener-
alized the Feynman, Metropolis and Teller treatment of compressed atoms
to the relativistic regimes (Rotondo et al., 2011c). We have so enforced, self-
consistently in a relativistic Thomas-Fermi equation, the condition of β-equilibrium
extending the works of Popov (1971b), Zeldovich and Popov (1972), Migdal
et al. (1976, 1977), Ferreirinho et al. (1980) and Ruffini and Stella (1981) for
heavy nuclei. Thanks to the existence of scaling laws (see Rotondo et al.
(2011c) and Ruffini (2008c)) this treatment has been extrapolated to com-
pressed nuclear matter cores of stellar dimensions with mass numbers A ≃
(mPlanck/mn)3 ∼ 1057 or Mcore ∼ M⊙. Such configurations fulfill global but
not local charge neutrality. They have electric fields on the core surface, in-
creasing for decreasing values of the electron Fermi energy EF

e reaching val-
ues much larger than the critical value Ec = m2

e c3/(eh̄), for EF
e = 0. The

assumption of constant distribution of protons at nuclear densities simulates,
in such a treatment, the confinement due to the strong interactions in the case
of nuclei and heavy nuclei and due to both the gravitational field and the
strong interactions in the case of nuclear matter cores of stellar sizes.

In this article we introduce explicitly the effects of gravitation by consid-
ering a general relativistic system of degenerate fermions composed of neu-
trons, protons and electrons in β-equilibrium: this is the simplest nontrivial
system in which new electrodynamical and general relativistic properties of
the equilibrium configuration can be clearly and rigorously illustrated. We
first prove that the condition of local charge neutrality can never be imple-
mented since it violates necessary conditions of equilibrium at the micro-
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physical scale. We then prove the existence of a solution with global, but not
local, charge neutrality by taking into account essential gravito-electrodynamical
effects. First we recall the constancy of the general relativistic Fermi energy
of each specie pioneered by Klein (1949). We subsequently introduce the gen-
eral relativistic Thomas-Fermi equations for the three fermion species fulfill-
ing relativistic quantum statistics, governed by the Einstein-Maxwell equa-
tions. The solution of this system of equations presents a formidable mathe-
matical challenge in theoretical physics. The traditional difficulties encoun-
tered in proving the existence and unicity of the solution of the Thomas-Fermi
equation are here enhanced by the necessity of solving the general relativistic
Thomas-Fermi equation coupled with the Einstein-Maxwell system of equa-
tions. We present the general solution for the equilibrium configuration, from
the center of the star all the way to the border, giving the details of the gravi-
tational field, of the electrodynamical field as well as of the conserved quan-
tities.

We illustrate such a solution by selecting a central density ρ(0) = 3.94ρnuc,
where ρnuc ≃ 2.7 × 1014 g cm−3 is the nuclear density. We point out the exis-
tence near the boundary of the core in the equilibrium configuration of three
different radii, in decreasing order: Re corresponding to the vanishing of the
Fermi momentum of the electron component; PF

e = 0, Rp corresponding to

the vanishing of the Fermi momentum of the proton component; PF
p = 0 and

Rn corresponding to the radius at which the Fermi momentum of neutrons
vanishes: PF

n = 0. We then give explicit expressions for the proton versus
electron density ratio and the proton versus neutron density ratio for any
value of the radial coordinate as well as for the electric potential at the center
of the configuration. A novel situation occurs: the description of the pressure
and density is not anylonger a local one. Their determination needs prior
knowledge of the global electrodynamical and gravitational potentials on the
entire system as well as of the radii Rn, Rp and Re. This is a necessary outcome
of the self-consistent solution of the eigenfunction within general relativistic
Thomas-Fermi equation in the Einstein-Maxwell background. As expected
from the considerations in Rotondo et al. (2011c), the electric potential at the
center of the configuration fulfills eV(0) ≃ mπc2 and the gravitational poten-

tial 1− eν(0)/2 ≃ mπ/mp. The implementation of the constancy of the general
relativistic Fermi energy of each particle species and the consequent system
of equations illustrated here is the simplest possible example admitting a rig-
orous nontrivial solution. It will necessarily apply in the case of additional
particle species and of the inclusion of nuclear interactions: in this cases how-
ever it is not sufficient and the contribution of nuclear fields must be taken
into due account.
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C.1.2. The impossibility of a solution with local charge

neutrality

We consider the equilibrium configurations of a degenerate gas of neutrons,
protons and electrons with total matter energy density and total matter pres-
sure

E = ∑
i=n,p,e

2

(2πh̄)3

∫ PF
i

0
ǫi(p) 4πp2dp , (C.1.1)

P = ∑
i=n,p,e

1

3

2

(2πh̄)3

∫ PF
i

0

p2

ǫi(p)
4πp2dp , (C.1.2)

where ǫi(p) =
√

c2p2 + m2
i c4 is the relativistic single particle energy. In ad-

dition, we require the condition of β-equilibrium between neutrons, protons
and electrons

µn = µp + µe , (C.1.3)

where PF
i denotes the Fermi momentum and µi = ∂E/∂ni =

√

c2(PF
i )

2 + m2
i c4

is the free-chemical potential of particle-species with number density ni =

(PF
i )

3/(3π2h̄3). We now introduce the extension to general relativity of the

Thomas-Fermi equilibrium condition on the generalized Fermi energy EF
e of

the electron component

EF
e = eν/2µe − mec

2 − eV = constant , (C.1.4)

where e is the fundamental charge, V is the Coulomb potential of the config-
uration and we have introduced the metric

ds2 = eν(r)c2dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2 , (C.1.5)

for a spherically symmetric non-rotating neutron star. The metric function

λ is related to the mass M(r) and the electric field E(r) = −e−(ν+λ)/2V ′ (a
prime stands for radial derivative) through

e−λ = 1 − 2GM(r)

c2r
+

G

c4
r2E2(r) . (C.1.6)

Thus the equations for the neutron star equilibrium configuration consist of
the following Einstein-Maxwell equations and general relativistic Thomas-
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Fermi equation

M′ = 4πr2 E

c2
− 4πr3

c2
e−ν/2V̂ ′(np − ne), (C.1.7)

ν′ =
2G

c2

4πr3P/c2 + M − r3E2/c2

r2
(

1 − 2GM
c2r

+ Gr2

c4 E2
) , (C.1.8)

P′ +
ν′

2
(E+ P) = −(Pem)′ − 4Pem

r
, (C.1.9)

V̂ ′′ +
2

r
V̂ ′
[

1 − r(ν′ + λ′)
4

]

= −4παh̄c eν/2eλ

{

np

−e−3ν/2

3π2
[V̂2 + 2mec

2V̂ − m2
e c4(eν − 1)]3/2

}

, (C.1.10)

where α denotes the fine structure constant, V̂ = EF
e + eV, Pem = −E2/(8π)

and we have used Eq. (C.1.4) to obtain Eq. (C.1.10).

It can be demonstrated that the assumption of the equilibrium condition
(C.1.4) together with the β-equilibrium condition (C.1.3) and the hydrostatic
equilibrium (C.1.9) is enough to guarantee the constancy of the generalized
Fermi energy

EF
i = eν/2µi − mic

2 + qiV , i = n, p, e , (C.1.11)

for all particle species separately. Here qi denotes the particle unit charge of
the i-species. Indeed, as shown by Olson and Bailyn (1975, 1978), when the
fermion nature of the constituents and their degeneracy is taken into account,
in the configuration of minimum energy the generalized Fermi energies EF

i
defined by (C.1.11) must be constant over the entire configuration. These
minimum energy conditions generalize the equilibrium conditions of Klein
(1949) and of Kodama and Yamada (1972) to the case of degenerate multi-
component fluids with particle species with non-zero unit charge.

If one were to assume, as often done in literature, the local charge neutral-
ity condition ne(r) = np(r) instead of assuming the equilibrium condition
(C.1.4), this would lead to V = 0 identically (since there will be no electric
fields generated by the neutral matter distribution) implying via Eqs. (C.1.3)
and (C.1.9)

EF
e + EF

p = eν/2(µe + µp)− (me + mp)c
2 = EF

n

+ (mn − me − mp)c
2 = constant . (C.1.12)

Thus the neutron Fermi energy would be constant throughout the configu-
ration as well as the sum of the proton and electron Fermi energies but not
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the individual Fermi energies of each component. In Fig. C.1 we show the
results of the Einstein equations for a selected value of the central density
of a system of degenerate neutrons, protons, and electrons in β-equilibrium
under the constraint of local charge neutrality. In particular, we have plotted
the Fermi energy of the particle species in units of the pion rest-energy. It
can be seen that indeed the Fermi energies of the protons and electrons are
not constant throughout the configuration which would lead to microscopic
instability. This proves the impossibility of having a self-consistent configu-
ration fulfilling the condition of local charge neutrality for our system. This
result is complementary to the conclusion of Eq. (4.6) of Olson and Bailyn
(1975) who found that, at zero temperature, only a dust solution with zero
particle kinetic energy can satisfy the condition of local charge neutrality and
such a configuration is clearly unacceptable for an equilibrium state of a self-
gravitating system.
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Figure C.1.: Fermi energies for neutrons, protons and electrons in units of
the pion rest-energy for a locally neutral configuration with central density
ρ(0) = 3.94ρnuc, where ρnuc = 2.7 × 1014 g cm−3 denotes the nuclear density.
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C.1.3. The solution with global charge neutrality

We turn now to describe the equilibrium configurations fulfilling only global
charge neutrality. We solve self-consistently Eqs. (C.1.7) and (C.1.8) for the
metric, Eq. (C.1.9) for the hydrostatic equilibrium of the three degenerate
fermions and, in addition, we impose Eq. (C.1.3) for the β-equilibrium. The
crucial equation relating the proton and the electron distributions is then
given by the general relativistic Thomas-Fermi equation (C.1.10). The bound-
ary conditions are: for Eq. (C.1.7) the regularity at the origin: M(0) = 0, for
Eq. (C.1.9) a given value of the central density, and for Eq. (C.1.10) the reg-
ularity at the origin ne(0) = np(0), and a second condition at infinity which
results in an eigenvalue problem determined by imposing the global charge
neutrality conditions

V̂(Re) = EF
e , V̂ ′(Re) = 0 , (C.1.13)

at the radius Re of the electron distribution defined by

PF
e (Re) = 0 , (C.1.14)

from which follows

EF
e = mec

2eν(Re)/2 − mec
2

= mec
2

√

1 − 2GM(Re)

c2Re
− mec

2 . (C.1.15)

Then the eigenvalue problem consists in determining the gravitational poten-
tial and the Coulomb potential at the center of the configuration that satisfy
the conditions (C.1.13)–(C.1.15) at the boundary.

C.1.4. Numerical integration of the equilibrium equations

The solution for the particle densities, the gravitational potential, the Coulomb
potential and the electric field are shown in Fig. (C.2) for a configuration with
central density ρ(0) = 3.94ρnuc. In order to compare our results with those
obtained in the case of nuclear matter cores of stellar dimensions Rotondo
et al. (2011c) as well as to analyze the gravito-electrodynamical stability of the
configuration we have plotted the electric potential in units of the pion rest-
energy and the gravitational potential in units of the pion-to-proton mass ra-
tio. One particular interesting new feature is the approach to the boundary of
the configuration: three different radii are present corresponding to distinct
radii at which the individual particle Fermi pressure vanishes. The radius Re

for the electron component corresponding to PF
e (Re) = 0, the radius Rp for

the proton component corresponding to PF
p (Rp) = 0 and the radius Rn for
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the neutron component corresponding to PF
n (Rn) = 0.

The smallest radius Rn is due to the threshold energy for β-decay which
occurs at a density ∼ 107 g cm−3. The radius Rp is larger than Rn because the
proton mass is slightly smaller than the neutron mass. Instead, Re > Rp due
to a combined effect of the difference between the proton and electron masses
and the implementation of the global charge neutrality condition through the
Thomas-Fermi equilibrium conditions.

For the configuration of Fig. C.2 we found Rn ≃ 12.735 km, Rp ≃ 12.863

km and Re ≃ Rp + 103λe where λe = h̄/(mec) denotes the electron Compton
wavelength. We find that the electron component follows closely the pro-
ton component up to the radius Rp and neutralizes the configuration at Re

without having a net charge, contrary to the results e.g in Olson and Bailyn
(1978).

It can be seen from Fig. C.2 that the negative proton gravitational potential
energy is indeed always larger than the positive proton electric potential en-
ergy. Therefore the configuration is stable against Coulomb repulsion. This
confirms the results in the simplified case analyzed by Rotondo et al. (2011c).

From Eq. (C.1.11) and the relation between Fermi momentum and the par-

ticle density PF
i = (3π2h̄3ni)

1/3, we obtain the proton-to-electron and proton-
to-neutron ratio for any value of the radial coordinate

np(r)

ne(r)
=

[

f 2(r)µ2
e (r)− m2

pc4

µ2
e (r)− m2

e c4

]3/2

, (C.1.16)

np(r)

nn(r)
=

[

g2(r)µ2
n(r)− m2

pc4

µ2
n(r)− m2

nc4

]3/2

, (C.1.17)

where f (r) = (EF
p + mpc2 − eV)/(EF

e + mec
2 + eV), g(r) = (EF

p + mpc2 −
eV)/(EF

n + mnc2) and the constant values of the generalized Fermi energies
are given by

EF
n = mnc2eν(Rn)/2 − mnc2 , (C.1.18)

EF
p = mpc2eν(Rp)/2 − mpc2 + eV(Rp) , (C.1.19)

EF
e = mec

2eν(Re)/2 − mec
2 . (C.1.20)

A novel situation occurs: the determination of the quantities given in Eqs. (C.1.16)
and (C.1.18) necessarily require the prior knowledge of the global electrody-
namical and gravitational potential from the center of the configuration all
the way out to the boundary defined by the radii Re, Rp and Rn. This neces-
sity is an outcome of the solution for the eigenfunction of the general rela-
tivistic Thomas-Fermi equation (C.1.10).

From the regularity condition at the center of the star ne(0) = np(0) to-
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Figure C.2.: Top panel: particle number density of neutrons, protons, and
electrons approaching the boundary of the configuration in units of the nu-
clear density nnuc ≃ 1.6 × 1038 cm−3. Bottom panel: proton and elec-
tron Coulomb potentials in units of the pion rest-energy eV/(mπc2) and
−eV/(mπc2) respectively and the proton gravitational potential in units of
the pion mass mpΦ/mπ where Φ = (eν/2 − 1).1492
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Figure C.3.: Top panel: electron number density for r ≥ Rp normalized to its
value at r = Rp. Bottom panel: electric field for r ≥ Rp normalized to its
value at r = Rp. We have shown also the behavior of the solution of the gen-
eral relativistic Thomas-Fermi equation (C.1.10) for two different eigenvalues
close to the one which gives the globally neutral configuration.
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gether with Eq. (C.1.16) we obtain the Coulomb potential at the center of the
configuration

eV(0) =
(mp − me)c2

2

[

1 +
EF

p − EF
e

(mp − me)c2

− (mp + me)c2

EF
n + mnc2

eν(0)

]

, (C.1.21)

which after some algebraic manipulation and defining the central density in
units of the nuclear density η = ρ(0)/ρnuc can be estimated as

eV(0) ≃ 1

2

[

mpc2eν(Rp)/2 − mec
2eν(Re)/2

− mnc2eν(Rn)/2

1 + [PF
n (0)/(mnc)]2

]

≃ 1

2

[

(3π2η/2)2/3mp

(3π2η/2)2/3mπ + m2
n/mπ

]

mπc2 , (C.1.22)

where we have approximated the gravitational potential at the boundary as

eν(Re)/2 ≃ eν(Rp)/2 ≃ eν(Rn)/2 ≃ 1. Then for configurations with central den-
sities larger than the nuclear density we necessarily have eV(0) & 0.35mπc2.
In particular, for the configuration we have exemplified with η = 3.94 in
Fig. C.2, from the above expression (C.1.22) we obtain eV(0) ≃ 0.85mπc2.
This value of the central potential agrees with the one obtained in the simpli-
fied case of nuclear matter cores with constant proton density (Rotondo et al.,
2011c).

C.1.5. Conclusions

We have proved in the first part of this letter that the treatment generally used
for the description of neutron stars adopting the condition of local charge
neutrality, is not consistent with the Einstein-Maxwell equations and micro-
physical conditions of equilibrium consistent with quantum statistics (see
Fig. C.1). We have shown how to construct a self-consistent solution for a
general relativistic system of degenerate neutrons, protons and electrons in
β-equilibrium fulfilling global but not local charge neutrality.

Although the mass-radius relation in the simple example considered here
in our new treatment, differs slightly from the one of the traditional ap-
proaches, the differences in the electrodynamic structure are clearly very large.
As is well-known these effects can lead to important astrophysical conse-
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quences on the physics of the gravitational collapse of a neutron star to a
black hole Ruffini et al. (2010b).

Having established in the simplest possible example the new set of Einstein-
Maxwell and general relativistic Thomas-Fermi equations, we now proceed
to extend this approach when strong interactions are present Rueda et al.
(2011). The contribution of the strong fields to the energy-momentum tensor,
to the four-vector current and consequently to the Einstein-Maxwell equa-
tions have to be taken into account. Clearly in this more general case, the con-
ditions introduced in this letter have to be still fulfilled: the r-independence
of the generalized Fermi energy of electrons and the fulfillment of the general
relativistic Thomas-Fermi equation Rueda et al. (2011). In addition, the gen-
eralized Fermi energy of protons and neutrons will depend on the nuclear
interaction fields. The fluid of neutrons, protons and electrons in this more
general case does not extend all the way to the neutron star surface but is
confined to the neutron star core endowed with overcritical electric fields, in
precise analogy with the case of the compressed nuclear matter core of stellar
dimension described in Rotondo et al. (2011c).
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C.2. The Klein first integrals in an equilibrium

system with electromagnetic, weak, strong

and gravitational interactions

C.2.1. Introduction

The unsolved problems of supernovae theories as well as the necessity of
processes leading to electrodynamical phenomena during the gravitational
collapse to a black hole (Ruffini et al., 2010b) lead to the necessity of critically
reexamining the current treatment of neutron stars. In a series of articles (see
Rotondo et al. (2011c,d)), we have recently developed the first steps towards
a new consistent treatment for the description of neutron stars, well beyond
the traditional Tolman-Oppenheimer-Volkoff equations.

First we have generalized the treatment of compressed atoms of Feynman,
Metropolis and Teller to the relativistic regimes (see Rotondo et al. (2011c) for
details). There, it has been enforced self-consistently in a relativistic Thomas-
Fermi equation, the condition of β-equilibrium extending the works of Popov
(1971b), Zeldovich and Popov (1972), Migdal et al. (1976, 1977), Ferreirinho
et al. (1980) and Ruffini and Stella (1981) for heavy nuclei. Then, through
the using of scaling laws, following Ruffini (2008c); Popov (2010), this treat-
ment was extrapolated to compressed nuclear matter cores at nuclear and
supranuclear densities. Such cores have stellar dimensions and mass num-
bers A ≃ (mPlanck/mn)3 ∼ 1057 or Mcore ∼ M⊙. In addition, they fulfill
global but not local charge neutrality having electric fields on the core sur-
face, increasing for decreasing values of the electron Fermi energy EF

e reach-
ing values much larger than the critical value Ec = m2

e c3/(eh̄), for EF
e = 0.

The assumption of constant distribution of protons at nuclear densities sim-
ulates, in such a treatment, the confinement due to the strong interactions in
the case of nuclei and heavy nuclei and due to both the gravitational field
and strong interactions in the case of nuclear matter cores of stellar sizes at
nuclear and supranuclear densities.

In a subsequent work Rotondo et al. (2011d), we have generalized the
above approach explicitly including the effects of the gravitational field by
considering the most simplified nontrivial but rigorous treatment of a general
relativistic system of neutrons, protons and electrons in β-equilibrium. It has
been there proved that the traditional treatment for the description of neutron
stars adopting the condition of local charge neutrality is not consistent with
the Einstein-Maxwell equations and with microphysical conditions of equi-
librium within quantum statistics. The role of the constancy of the general
relativistic Fermi energy of each particle species pioneered by Klein (1949)
has been there emphasized and, the full system of equilibrium equations con-
sisting of the Einstein-Maxwell and general relativistic Thomas-Fermi equa-
tions has been formulated. The corresponding solution of such a system of
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equations has been there given in the simplest possible example of a config-
uration of neutrons, protons and electrons in β-equilibrium with electromag-
netic, weak and gravitational interactions. New electrodynamic and general
relativistic properties of the equilibrium configurations have been there illus-
trated.

The aim of this article is to make an essential new step: we further proceed
to the description of a system of neutrons, protons and electrons fulfilling
strong, electromagnetic, weak and gravitational interactions. The essential
role of the Klein first integrals is evidenced and their theoretical formulation
is presented in the Einstein-Maxwell background. For the sake of generality
the treatment is performed in the most general case in which finite temper-
ature effects are also taking into account. We adopt throughout the article
natural units h̄ = c = 1.

C.2.2. The Constitutive General Relativistic Equations

The densities in the core of a neutron star exceed the nuclear density ρnuc ∼
2.7 × 1014 g/cm3 and may reach densities of order ∼ 1017 g/cm3 at the verge
of the gravitational collapse of the neutron star to a black hole. There is there-
fore the need of a consistent relativistic theory for the description of the in-
teractions between the matter constituents. In particular, approaches for the
nuclear interaction between nucleons based on phenomenological potentials
and non-relativistic many-body theory become inapplicable (see Bowers et al.
(1973b,a)).

A self-consistent relativistic and well-tested model for the nuclear inter-
actions is the Walecka model (see Duerr (1956); Walecka (1974) for details).
This model share common features with the model adopted by Bowers et al.
in (Bowers et al., 1973b,a); in both of them the nucleons interact through a
Yukawa coupling and the flat spacetime has been considered to construct the
equation of state of nuclear matter. The technique of constructing the equa-
tion of state assuming flat spacetime has been generally used since, as pointed
out in Bowers et al. (1973b,a), as long as ρ < 1049 g/cm3 the gravitational con-
tributions to interactions between particles are negligible. However, when we
turn to neutron star configurations at nuclear and supranuclear densities, it
has been shown in Rotondo et al. (2011d) how the solution of the Einstein-
Maxwell system of equations is mandatory.

In the often called extended version of the Walecka model, the strong inter-
action between nucleons is described by the exchange of three virtual mesons:
σ is an isoscalar meson field providing the attractive long-range part of the
nuclear force; ω is a massive vector field that models the repulsive short range
and; ρ is the massive isovector field that takes account surface as well as
isospin effects of nuclei (see also Boguta and Bodmer (1977); Ring (1996)).
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The total Lagrangian density of the system is given by

L = Lg +L f +Lσ +Lω +Lρ +Lγ +Lint, (C.2.1)

where the Lagrangian densities for the free-fields are

Lg = − R

16πG
, (C.2.2)

Lγ = −1

4
FµνFµν, (C.2.3)

Lσ =
1

2
∇µσ∇µσ − U(σ), (C.2.4)

Lω = −1

4
ΩµνΩµν +

1

2
m2

ωωµωµ, (C.2.5)

Lρ = −1

4
RµνR

µν +
1

2
m2

ρρµρµ, (C.2.6)

where Ωµν ≡ ∂µων − ∂νωµ, Rµν ≡ ∂µρν − ∂νρµ, Fµν ≡ ∂µ Aν − ∂νAµ are the
field strength tensors for the ωµ, ρ and Aµ fields respectively, ∇µ stands for
covariant derivative and R is the Ricci scalar. We adopt the Lorenz gauge for
the fields Aµ, ωµ, and ρµ. The self-interaction scalar field potential U(σ) is
a quartic-order polynom for a renormalizable theory (see e.g. Lee and Wick
(1974)). The specific functional form of U(σ) is not relevant for the scope of
this article, thus we will not adopt any particular form of it hereafter.

The Lagrangian density for the three fermion species is

L f = ∑
i=e,N

ψ̄i

(

iγµDµ − mi

)

ψi, (C.2.7)

where ψN is the nucleon isospin doublet, ψe is the electronic singlet, mi states
for the mass of each particle-specie and Dµ = ∂µ + Γµ, being Γµ the Dirac spin
connections that satisfy the commutation relation

[γµ, Γν] = ∂νγµ − Γα
µνγα, (C.2.8)

where Γα
µν denotes the Christoffel symbols.

The interacting part of the Lagrangian density is, in the minimal coupling
assumption, given by

Lint = −gσσψ̄NψN − gωωµ J
µ
ω − gρρµ J

µ
ρ + eAµ J

µ
γ,e − eAµ J

µ
γ,N, (C.2.9)
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where the conserved currents are

J
µ
ω = ψ̄NγµψN, (C.2.10)

J
µ
ρ = ψ̄Nτ3γµψN, (C.2.11)

J
µ
γ,e = ψ̄eγ

µψe, (C.2.12)

J
µ
γ,N = ψ̄N

(

1 + τ3

2

)

γµψN. (C.2.13)

The coupling constants of the σ, ω and ρ-fields are gσ, gω and gρ, and e is
the fundamental electric charge. The Dirac matrices γµ and the isospin Pauli
matrices satisfy the Dirac algebra in curved spacetime (see e.g. Lee and Pang
(1987))

{γµ, γν} = 2gµν, (C.2.14)
{

γµ, γν

}

= 2gµν, (C.2.15)

{γµ, γν} = 2δ
µ
ν , (C.2.16)

[

τi, τj

]

= 2ıǫijkτk. (C.2.17)

The Einstein-Maxwell-Dirac system of equations is then given by

Gµν + 8πGTµν = 0, (C.2.18)

∇µFµν − eJν
ch = 0, (C.2.19)

∇µΩµν + m2
ωων − gω Jν

ω = 0, (C.2.20)

∇µR
µν + m2

ρρν − gρ Jν
ρ = 0, (C.2.21)

∇µ∇µσ + ∂σU(σ) + gsns = 0, (C.2.22)
[

γµ

(

iDµ − V
µ
N

)

− m̃N

]

ψN = 0, (C.2.23)
[

γµ (iD
µ + eAµ)− me

]

ψe = 0, (C.2.24)

where the scalar density ns = ψ̄NψN, the nucleon effective mass m̃N ≡ mN +
gσσ, and

V
µ
N ≡ gωωµ + gρτρµ + e

(

1 + τ3

2

)

Aµ, (C.2.25)

is the effective four potential of nucleons. The energy-momentum tensor of
free-fields and free-fermions Tµν of the system (C.2.3)–(C.2.6) is

Tµν = T
µν
f + T

µν
γ + T

µν
σ + T

µν
ω + T

µν
ρ , (C.2.26)
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where

T
µν
γ = −F

µ
α Fαν − 1

4
gµνFαβFαβ, (C.2.27)

T
µν
σ = ∇µ∇νσ − gµν

[

1

2
∇σσ∇σσ − U(σ)

]

, (C.2.28)

T
µν
ω = −Ω

µ
αΩαν − 1

4
gµνΩαβΩαβ + m2

ω

(

ωµων − 1

2
gµνωαωα

)

,(C.2.29)

T
µν
ρ = −R

µ
αR

αν − 1

4
gµν

RαβR
αβ + m2

ρ

(

R
µ
R

ν − 1

2
gµν

Rαωα

)

, (C.2.30)

are the contribution due to free-fields and T
µν
f is the contribution of free-

fermions which we discuss below.

C.2.3. The Thermodynamic Laws and the Field Equations in
the Spherically Symmetric Case

We first introduce the non-rotating spherically symmetric spacetime metric

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2, (C.2.31)

where the ν(r) and λ(r) are only functions of the radial coordinate r.
For very large number of fermions, we can adopt the mean-field approx-

imation in which fermion-field operators are replaced by their expectation
values (see e.g. Walecka (1974) for details).

We write the nucleon doublet and the electronic spinor as ψi = ψi(k)e
−ikµxµ

in the phase-space. Suppose that neutrons, protons and electrons, and the
corresponding antiparticles, are in thermodynamic equilibrium with a finite
temperature T. The occupation fermion-number operators of the “k”-state,
Ni(k) = ψ†

i (k)ψi(k) with i = e, p, n, are replaced by their Fermi-distributions

f±i (k) = 〈ψ±
i (k)†ψ±

i (k)〉 =
[

exp

(

ǫi(k)∓ µi

kBT

)

+ 1

]−1

, (C.2.32)

where kB is the Boltzmann constant, µi and ǫi(k) =
√

k2 + m̃2
i denote the

single-particle chemical potential and energy-spectrum (we recall that for
electrons m̃e = me). The sign ‘+’ correspond to particles and ‘−’ to antiparti-
cles. We do not consider “real” bosons to be present in the system; the only
distribution functions involved in the computation are due to fermions and
antifermions and therefore phenomena as Bose-Einstein condensation does
not occur within this theory (see e.g. Bowers et al. (1973b) for details).

It is worth to recall that all the thermodynamic quantities, e.g. k, ǫ, T ..., are
written here in the local frame which is related to the coordinate frame by the
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Lorentz “boost”
Λ

(a)
α = (uα, χα, Θα, Φα), (C.2.33)

where uα = eν/2δ0
α, χα = eλ/2δ1

α, Θα = rδ2
α, and Φα = r sin θδ3

α, being δα
β the

usual Kronecker delta symbol.
The number-density ni of the i-specie, taking into account the antiparticle

contribution is, within the mean-field approximation, given by

ni =
2

(2π)3

∫

d3k[ f+i (k)− f−i (k)]. (C.2.34)

The contribution of free-fermions and antifermions to the energy-momentum
tensor can be then written in the perfect fluid form (see e.g. Ruffini and
Bonazzola (1969))

T
µν
f = (E+ P)uµuν − Pgµν, (C.2.35)

where uµ is the four-velocity of the fluid which satisfies uµuµ = 1, and the
energy-density E and the pressure P are given by

E = ∑
i=n,p,e

Ei, P = ∑
i=n,p,e

Pi, (C.2.36)

being Ei and Pi the single fermion-antifermion fluid contributions

Ei =
2

(2π)3

∫

d3kǫi(k)[ f
+
i (k) + f−i (k)], (C.2.37)

Pi =
1

3

2

(2π)3

∫

d3k
k2

ǫi(k)
[ f+i (k) + f−i (k)]. (C.2.38)

The equation of state (C.2.36)–(C.2.38) satisfies the thermodynamic law

E+ P− TS = ∑
i=n,p,e

niµi, (C.2.39)

where S = S/V is the entropy per unit volume (entropy density) and µi =
∂E/∂ni is the free-chemical potential of the i-specie. At zero-temperature T =

0, µi =
√

(KF
i )

2 + m̃2
i and ni = (KF

i )
3/(3π2), where KF

i denotes the Fermi

momentum of the i-specie.
The scalar density ns, within the mean-field approximation, is given by the

following expectation value

ns = 〈ψ̄NψN〉 =
2

(2π)3 ∑
i=n,p

∫

d3k
m̃N

ǫi(k)
[ f+i (k) + f−i (k)]. (C.2.40)

In the static case, only the temporal components of the covariant currents
survive, i.e. 〈ψ̄(x)γiψ(x)〉 = 0. Thus, by taking the expectation values of
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Eqs. (C.2.10)–(C.2.13), we obtain the non-vanishing components of the cur-
rents

Jch
0 = nchu0 = (np − ne)u0, (C.2.41)

Jω
0 = nbu0 = (nn + np)u0, (C.2.42)

J
ρ
0 = n3u0 = (np − nn)u0, (C.2.43)

where nb, np, nn and ne are the baryon, proton, neutron and electron num-
ber densities which are functions only of the spatial coordinates, and u0 =√

g00 = eν/2.

Making a variation of Eq. (C.2.39) and using Eqs. (C.2.36)–(C.2.38) and
(C.2.40), we obtain the generalized Gibbs-Duhem relation

dP = ∑
i=n,p,e

nidµi − gσnsdσ + SdT, (C.2.44)

which can be rewritten as

dP = ∑
i=n,p,e

nidµi − gσnsdσ +

(

E+ P− ∑
i=n,p,e

niµi

)

dT

T
, (C.2.45)

where we have used Eq. (C.2.39) to eliminate S, and we have used the relation
between the scalar density and the fluid energy-density ns = ∂E/∂m̃N , which
follows from Eqs. (C.2.36)–(C.2.38) and (C.2.40).

Therefore, the Einstein-Maxwell equations (C.2.18)–(C.2.22), within the mean-
field approximation, become

e−λ(r)

(

1

r2
− 1

r

dλ

dr

)

− 1

r2
= −8πGT0

0 , (C.2.46)

e−λ(r)

(

1

r2
+

1

r

dν

dr

)

− 1

r2
= −8πGT1

1 , (C.2.47)

e−λ(r)

[

1

2

(

dν

dr
− dλ

dr

)(

1

r
+

1

2

dν

dr

)

+
1

2

d2ν

dr2

]

= −8πGT3
3 , (C.2.48)

d2V

dr2
+

dV

dr

[

2

r
− 1

2

(

dν

dr
+

dλ

dr

)]

= −eλeJ0
ch, (C.2.49)

d2σ

dr2
+

dσ

dr

[

2

r
− 1

2

(

dν

dr
+

dλ

dr

)]

= eλ [∂σU(σ) + gsns] , (C.2.50)

d2ω

dr2
+

dω

dr

[

2

r
− 1

2

(

dν

dr
+

dλ

dr

)]

= −eλ
[

gω J0
ω − m2

ωω
]

, (C.2.51)

d2ρ

dr2
+

dρ

dr

[

2

r
− 1

2

(

dν

dr
+

dλ

dr

)]

= −eλ
[

gρ J0
ρ − m2

ρρ
]

, (C.2.52)
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where we have introduced the notation ω0 = ω, ρ0 = ρ, and A0 = V. The
metric function λ is related to the mass M(r) and the electric field E(r) =
−e−(ν+λ)/2V ′ through

e−λ(r) = 1 − 2GM(r)

r
+ Gr2E2(r) = 1 − 2GM(r)

r
+

GQ2(r)

r2
, (C.2.53)

where we have introduced also the conserved charge Q(r) = r2E(r).

An important equation, although not independent of the Einstein-Maxwell
equations (C.2.46)–(C.2.52), is given the energy-momentum conservation law

∇µTµν = −gω Jω
µ Ωµν − gρ J

ρ
µR

µν + eJch
µ Fµν, (C.2.54)

from which we have

dP

dr
= − (E+ P)

2

dν

dr
− gσns

dσ

dr
− gω J0

ω
dω

dr
− gρ J0

ρ
dρ

dr
− eJ0

ch

dV

dr
, (C.2.55)

where we have used the energy-momentum tensor Tµν given by Eq. (C.2.26).

C.2.4. Constancy of the Klein potentials and β-equilibrium

Introducing the nucleon doublet and the electronic spinor in the wave-form

ψi = ψi(k)e
−ikµxµ

in phase-space, the Dirac equations (C.2.24) become

(γµK
µ
i − m̃i)ψi(k) = 0, (C.2.56)

where
K

µ
i ≡ kµ − V

µ
i , V

µ
e = −eAµ. (C.2.57)

In the mean-field approximation, making the quadrature of Dirac operators
in Eq. (C.2.56) and averaging over all states “k”, we obtain the generalized
chemical potentials or, for short Klein potentials for electrons Ee, neutrons En

and protons Ep

Ee =
√

g00µe − eV = eν/2µe − eV, (C.2.58)

Ep =
√

g00µp + gωω + gρρ + eV = eν/2µp + gωω + gρρ + eV,(C.2.59)

En =
√

g00µn + gωω − gρρ = eν/2µn + gωω − gρρ, (C.2.60)

where we have used Eqs. (C.2.14)–(C.2.17) and Eqs. (C.2.32), (C.2.34), (C.2.36)–
(C.2.38). In the zero-temperature case, they are generalized Fermi energies for
electrons Ee = EF

e , neutrons En = EF
n and protons Ep = EF

p .

Using the equations of motion for the fields ρ, ω and σ, and using the gen-
eralized Gibbs-Duhem relation (C.2.45), the energy-momentum conservation
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equation (C.2.55) can be rewritten as

eν/2 ∑
i=n,p,e

ni

(

dµi −
dT

T
µi

)

+ (E+ P)eν/2

(

dT

T
+

1

2
dν

)

+ gωnbdω + gρn3dρ + enchdV = 0. (C.2.61)

The isothermal Tolman condition (Tolman, 1930) (see also Klein (1949)) de-
mands the constancy of the gravitationally red-shifted temperature

dT

T
+

1

2
dν = 0, or eν/2T = constant. (C.2.62)

Such a condition can be used into Eq. (C.2.61) to obtain

∑
i=n,p,e

nid(e
ν/2µi) + gωnbdω + gρn3dρ + enchdV = 0. (C.2.63)

Moreover, using the expressions (C.2.58)–(C.2.59) of the generalized chemical
potentials, Eq. (C.2.63) can be rewritten as

∑
i=n,p,e

nidEi = 0, (C.2.64)

which leads for independent and non-zero particle number densities ni 6= 0
to the constancy of the Klein potentials (C.2.58)–(C.2.60) for each particle-
species, i.e.

Ee = eν/2µe − eV = constant, (C.2.65)

Ep = eν/2µp + Vp = constant, (C.2.66)

En = eν/2µn + Vn = constant, (C.2.67)

where

Vp = gωω + gρρ + eV, (C.2.68)

Vn = gωω − gρρ. (C.2.69)

In the case of nuclear matter in β-equilibrium (assuming not trapped neu-
trinos), the values of the constant Klein potentials (C.2.65)–(C.2.67) are linked
by the condition

En = Ep + Ee, (C.2.70)

which can be rewritten explicitly in terms of the chemical potentials as

µn = µp + µe + 2gρρe−ν/2. (C.2.71)
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C.2.5. Concluding Remarks

We have presented the self-consistent equations of equilibrium at finite tem-
peratures for a system of neutrons, protons and electrons in β-equilibrium
within the framework of general relativity including quantum statistics, electro-
weak, and strong interactions. In the mean-field approximation, we obtained
the generalized particle chemical potentials from the Dirac equations for nu-
cleons and electrons.

From the Einstein-Maxwell equations, the thermodynamic laws and energy-
momentum conservation, we obtain the constancy of the Klein potential of
each particle-specie and of the gravitationally red-shifted temperature through-
out the configuration, i.e. the first Klein integrals and the Tolman isother-
mal condition respectively. In the non-interacting degenerate case, following
a minimization energy procedure, it was demonstrated that the thermody-
namic equilibrium condition of constancy of the generalized particle Fermi
energy of all particle species holds (see Olson and Bailyn (1975)). Such a pro-
cedure can be straightforwardly applied to the present case, being the final
result given by the equilibrium conditions (C.2.65) and (C.2.66).

The precise values of such constants are linked, in the case of nuclear mat-
ter in β-equilibrium, by Eq. (C.2.70), and their full determination needs the
inclusion of additional constraints to the system, e.g. global charge neutrality
(see e.g. Rotondo et al. (2011d)).

The correct implementation of such generalized Thomas-Fermi equilibrium
conditions needs the self-consistent solution of the global problem of equilib-
rium of the configuration following from the solution of the Einstein-Maxwell
equations (C.2.46), (C.2.47), (C.2.49)–(C.2.53), the general relativistic thermo-
dynamic equilibrium conditions (C.2.62), (C.2.65) and (C.2.66), together with
the constraints, e.g. β-equilibrium and global charge neutrality.

Thus, the full system of Einstein-Maxwell-Thomas-Fermi equations can be
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rewritten in the form

e−λ(r)

(

1

r2
− 1

r

dλ

dr

)

− 1

r2
= −8πGT0

0 , (C.2.72)

e−λ(r)

(

1

r2
+

1

r

dν

dr

)

− 1

r2
= −8πGT1

1 , (C.2.73)

V ′′ +
2

r
V ′
[

1 − r(ν′ + λ′)
4

]

= −4πe eν/2eλ(np − ne), (C.2.74)

d2σ

dr2
+

dσ

dr

[

2

r
− 1

2

(

dν

dr
+

dλ

dr

)]

= eλ [∂σU(σ) + gsns] , (C.2.75)

d2ω

dr2
+

dω

dr

[

2

r
− 1

2

(

dν

dr
+

dλ

dr

)]

= −eλ
[

gω J0
ω − m2

ωω
]

, (C.2.76)

d2ρ

dr2
+

dρ

dr

[

2

r
− 1

2

(

dν

dr
+

dλ

dr

)]

= −eλ
[

gρ J0
ρ − m2

ρρ
]

, (C.2.77)

Ee = eν/2µe − eV = constant, (C.2.78)

Ep = eν/2µp + Vp = constant, (C.2.79)

En = eν/2µn + Vn = constant, (C.2.80)

eν/2T = constant, (C.2.81)

where the constants En, Ep and Ee are linked by Eq. (C.2.70) and Vp,n is given
by Eq. (C.2.68). In particular, in the degenerate case T = 0, Eq. (C.2.74) be-
comes

V̂ ′′ +
2

r
V̂ ′
[

1 − r(ν′ + λ′)
4

]

= −4πα eν/2eλ

{

np

− e−3ν/2

3π2
[V̂2 + 2meV̂ − m2

e(e
ν − 1)]3/2

}

,

(C.2.82)

where V̂ ≡ eV + Ee and we have used Eq. (C.2.78) into Eq. (C.2.74). This
equation is the general relativistic extension of the relativistic Thomas-Fermi
equation recently introduced in Rotondo et al. (2011c) for the study of com-
pressed atoms. In addition, Eq. (C.2.82) has been recently used to obtain the
globally neutral configurations in the simpler case of degenerate neutrons,
protons and electrons in β-equilibrium (Rotondo et al., 2011d).
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C.3. On the constitutive equations of a

self-gravitating system of neutrons, protons

and electrons in β-equilibrium at finite

temperatures

C.3.1. Introduction

We have recently introduced a new approach which thanks to the existence
of scaling laws can apply to compressed atoms as well as to massive nuclear
matter cores of stellar dimensions (Rotondo et al., 2011c). This approach con-
cerning the compressed atom has already given a new contribution in the
study of white dwarfs. It represents the first self-consistent calculation taking
into due account the electromagnetic contribution in a relativistic treatment
of the Thomas-Fermi equation, within global formulation of the equilibrium
of white dwarfs in general relativity (Rotondo et al., 2011b).

The application of the above results (Rotondo et al., 2011c,b) to the case of
neutron stars is much more complex and it has been approached stepwise.
As a first step we have considered the application of this novel approach to
the case of a system of neutrons, protons, and electrons in β-equilibrium at
zero temperatures within general relativity (Rotondo et al., 2011d). These re-
sults are shortly recalled in Sec. C.3.2. The essential role of the generalized
Fermi energy of particles (the Klein potentials) and their constancy on the en-
tire equilibrium configuration has been outlined. The existence of an electric
potential over the entire configuration has been evidenced.

We have there proved, for the case of this simplified example where strong
interactions are neglected, that the traditional approach of describing the sys-
tem imposing the condition of local charge neutrality and solving the corre-
sponding TOV equations (see e.g. Shapiro and Teukolsky (1983)) is conceptu-
ally inconsistent. We have then substitute the condition of local charge neu-
trality with the condition of global charge neutrality and derived the correct
system of equations within the Einstein-Maxwell-Thomas-Fermi system. The
boundary conditions are also different from a traditional Cauchy data with
the values of the functions and first derivatives at the center into a boundary
condition at the center and delicate eigenvalue problem at the boundary de-
termining the condition of charge neutrality at the border; see Sec. C.3.2. The
conceptual differences and the alternative mathematical equations of the two
approaches, the ones imposing local versus global charge neutrality, lead to
the presence of additional electrodynamical global structures. However, in
the specific simple example considered in Rotondo et al. (2011d), they do not
give significant quantitative differences in the mass-radius relation for the
equilibrium configurations. A very different situation occurs when strong
interactions are also taken into account.
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Interestingly, these results should have been expected on the ground of
some classical works dating back to Rosseland (1924) about the gravito-polarization
in self-gravitating ideal Boltzmann electron-ion plasma. We indeed show that
our general relativistic equations for the case of global charge neutrality in
the Newtonian regime reproduce the Rosseland result. The work of Rosse-
land has attracted in time additional attention and has been generalized to
the case of multicomponent systems; see e.g. Iosilevskiy (2009) and also in
the case of general relativity the important results (Klein, 1949; Kodama and
Yamada, 1972; Olson and Bailyn, 1975).

In order to transfer these results in the treatment of realistic neutron stars,
the introduction of strong interactions is clearly necessary. We have recently
generalized our treatment to the case of strong interactions in Rueda et al.
(2011). There the major aim has been to prove the constancy of the Klein
potentials in the case in which the nuclear interactions are described by a
Lagrangian including in addition to the gravitational, electromagnetic, and
weak interactions, also the presence of σ, ω, and ρ virtual mesons that medi-
ate the nuclear interactions. These results are shortly summarized for com-
pleteness in Sec. C.3.3.

It is clear that neutron stars are not at zero temperatures but have tempera-
tures which in the case of the Crab pulsar are T ∼ 106 K, see e.g. Tennant et al.
(2001); Weisskopf et al. (2004). It has been pointed out to us that the thermal
energy expected in a neutron star is much larger than the Coulomb energy
obtained e.g. in Rotondo et al. (2011d). Before proceeding further in this re-
search we have to prove that these gravito-polarization effect do survive in
the presence of a system at T 6= 0. In any way, the study of the equilibrium
of a system of neutrons, protons, and electrons including all the interactions
need to be generalized to the case of finite temperatures. This treatment is
here presented in Sec. C.3.4. The constancy of the Klein potentials in this
more general case is presented in Sec. C.3.5 where it is also explicitly shown
how the thermal effects do not modify the existence of gravito-polarization.
The generality of the formalism here introduced allows to approach as well
the classical Boltzmann limit consistently.

we have finally outlined in the conclusions how this theoretical formula-
tion is now sufficient to approach the problem of the possible existence of
overcritical fields at the interface between the the core and the crust of the
neutron star.

C.3.2. Einstein-Maxwell-Thomas-Fermi equations in the
degenerate case

Following Rotondo et al. (2011d), we consider the equilibrium configurations
of a degenerate gas of neutrons, protons and electrons with total matter en-
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ergy density and total matter pressure

E = ∑
i=n,p,e

2

(2πh̄)3

∫ PF
i

0
ǫi(p) 4πp2dp , (C.3.1)

P = ∑
i=n,p,e

1

3

2

(2πh̄)3

∫ PF
i

0

p2

ǫi(p)
4πp2dp , (C.3.2)

where ǫi(p) =
√

c2p2 + m2
i c4 is the relativistic single particle energy and PF

i

denote the Fermi momentum, related to the particle number density ni by

ni = (PF
i )

3/(3π2h̄3).
Introducing the metric for a spherically symmetric non-rotating configura-

tion
ds2 = eν(r)c2dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2 , (C.3.3)

the full system of equations composed by the Einstein-Maxwell-Thomas-Fermi
equations can be written as (see Rotondo et al. (2011d) for details)

M′ = 4πr2 E

c2
− 4πr3

c2
e−ν/2V̂ ′

{

np

−e−3ν/2

3π2
[V̂2 + 2mec

2V̂ − m2
e c4(eν − 1)]3/2

}

, (C.3.4)

ν′ =
2G

c2

4πr3P/c2 + M − r3E2/c2

r2
(

1 − 2GM
c2r

+ Gr2

c4 E2
) , (C.3.5)

EF
e = eν/2µe − mec

2 − eV = constant, (C.3.6)

EF
p = eν/2µp − mpc2 + eV = constant, (C.3.7)

EF
n = EF

e + EF
p − (mn − me − mp)c

2, (C.3.8)

V̂ ′′ +
2

r
V̂ ′
[

1 − r(ν′ + λ′)
4

]

= −4παh̄c eν/2eλ

{

np

−e−3ν/2

3π2
[V̂2 + 2mec

2V̂ − m2
e c4(eν − 1)]3/2

}

, (C.3.9)

where a prime stands for radial derivative, Eqs. (C.3.6)–(C.3.7) are the exten-
sion to general relativity of the Thomas-Fermi equilibrium condition on the
generalized Fermi energies of electrons and protons, Eq. (C.3.8) is the condi-
tion of β-equilibrium between neutrons, protons, and electrons. We recall
that from Eqs. (C.3.6)–(C.3.8) it follows also the constancy of the general-
ized neutron Fermi energy. The Eq. (C.3.9) is the general relativistic exten-
sion of the relativistic Thomas-Fermi equation recently introduced in the rel-
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ativistic Feynman-Metropolis-Teller treatment for the study of compressed
atoms (Rotondo et al., 2011c). In the above equations e is the fundamental
charge, α is the fine structure constant, V is the Coulomb potential, µi =

∂E/∂ni =
√

c2(PF
i )

2 + m2
i c4 is the free-chemical potential of particle-species,

λ(r) is the metric function related to the mass M(r) and the electric field

E(r) = −e−(ν+λ)/2V ′ through

e−λ = 1 − 2GM(r)

c2r
+

G

c4
r2E2(r) . (C.3.10)

and V̂ = EF
e + eV.

As shown in Rotondo et al. (2011d), the condition of local charge neutrality
ne(r) = np(r) often adopted in literature is not consistent with Eqs. (C.3.6)
and (C.3.7), see Fig. 1 of Rotondo et al. (2011d) for details. Therefore, we
consider equilibrium configurations fulfilling only global charge neutrality.
We solve self-consistently Eq. (C.3.4) and (C.3.5) for the metric, Eqs. (C.3.6)–
(C.3.8) for the equilibrium of the three degenerate fermion species and for
the β-equilibrium. The crucial equation relating the proton and the electron
distributions is then given by the general relativistic Thomas-Fermi equation
(C.3.9). The boundary conditions are: for Eq. (C.3.4) the regularity at the
origin: M(0) = 0, for Eqs. (C.3.6)–(C.3.8) a given value of the central density,
and for Eq. (C.3.9) the regularity at the origin ne(0) = np(0), and a second
condition at infinity which results in an eigenvalue problem determined by
imposing the global charge neutrality conditions

V̂(Re) = EF
e , V̂ ′(Re) = 0 , (C.3.11)

at the radius Re of the electron distribution defined by

PF
e (Re) = 0 , (C.3.12)

from which follows

EF
e = mec

2eν(Re)/2 − mec
2

= mec
2

√

1 − 2GM(Re)

c2Re
− mec

2 . (C.3.13)

The eigenvalue problem consists in determining the gravitational potential
and the Coulomb potential at the center of the configuration that satisfy the
conditions (C.3.11)–(C.3.13) at the boundary. In Fig. 2 of Rotondo et al. (2011d)
we have shown the solution for the density, the gravitational potential and
electric potential for a configuration with central density ρ(0) = 3.94ρnuc,
where ρnuc ∼ 2.7 × 1014 g/cm3.

A particular interesting new feature is the approach to the boundary of the
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configuration where three different radii are present corresponding to distinct
radii at which the individual particle Fermi pressures vanish. The radius Re

for the electron component corresponding to PF
e (Re) = 0, the radius Rp for

the proton component corresponding to PF
p (Rp) = 0 and the radius Rn for

the neutron component corresponding to PF
n (Rn) = 0. For a configuration

with the aforementioned central density we found, for instance, Rn ≃ 12.735
km, Rp ≃ 12.863 km and Re ≃ Rp + 103λe where λe = h̄/(mec) denotes the
electron Compton wavelength (see Figs. 2 and 3 of Rotondo et al. (2011d), for
details). The occurrence of the radius Rn is due to the threshold energy for
inverse β-decay equilibrium between free neutrons, protons, and electrons,
at around ρ ∼ 107 (see e.g. Shapiro and Teukolsky (1983)). The electron com-
ponent follows closely the proton component up to the radius Rp where the
proton density drops to zero. The “proton skin”, Rp − Rn ∼ 0.1 km, can be
understood as being due to the difference between the proton and the neu-
tron mass. The charge difference leads to gravitational and Coulomb forces
acting on protons and only gravitational force on neutrons. The electron com-
ponent then fully neutralizes the positive charge at Re leading to a global con-
figuration without net charge, contrary to the results presented e.g in Olson
and Bailyn (1978).

It can be seen from Fig. 2 in Rotondo et al. (2011d) that the depth of the
Coulomb potential is of the order of . mπc2. In Fig. C.4 we have plotted the
Coulomb potential and the corresponding electric field of the configuration
studied here and in Rotondo et al. (2011d). A Coulomb potential ∼ mπc2/e
decreasing in a typical macroscopic neutron star radius R ∼ λπ(mPlanck/mp)

creates an electric field ∼ (mp/mPlanck)(mπ/me)2Ec ∼ 10−14Ec, being Ec =

m2
e c3/(eh̄) the critical electric field for vacuum polarization.

C.3.3. Newtonian limit

Despite the fact that the strong gravitational field of neutron stars requires a
general relativistic treatment, it is interesting to explore the Newtonian limit
of all the above considerations. This can help to elucidate if the gravito-
electromagnetic effects we have found are of general relativistic nature or
to prove their validity in a Newtonian regime.

The Newtonian limit of the equilibrium equations can be obtained by the
weak-field non-relativistic limit. We expand the gravitational potential at
first-order eν/2 ≈ 1+Φ/c2, where Φ is the Newtonian gravitational potential.
In the non-relativistic mechanics limit c → ∞, the particle chemical potential
becomes µi → µ̃i +mic

2, where µ̃i = (PF
i )

2/(2mi) denotes the non-relativistic
free-chemical potential. Applying these considerations, the electron and pro-
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Figure C.4.: Electric field and electron Coulomb potential energy of the con-
figuration of neutrons, protons, and electrons in β-equilibrium studied here
and in Rotondo et al. (2011d).
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ton equilibrium law (C.3.6) becomes

EF,Newt
p = µ̃p + mpΦ + eV = constant , (C.3.14)

EF,Newt
e = µ̃e + meΦ − eV = constant , (C.3.15)

which is the classical condition of thermodynamic equilibrium of a fluid of
charged particles in presence of external gravitational an electrostatic fields.

The condition of β-equilibrium is, in this case, given by

EF,Newt
n = EF,Newt

p + EF,Newt
e , (C.3.16)

which links the constants EF,Newt
p and EF,Newt

e to the constant neutron Fermi

energy EF,Newt
n .

From the constancy of the proton and electron Fermi energies it follows the
relation

µ̃p − µ̃e + (mp − me)Φ + 2eV = constant , (C.3.17)

which in the case of an ideal electron-ion gas becomes the Rosseland relation
of equilibrium (see Eq. 7 in Rosseland (1924)). It is interesting to obtain from
the above equation an estimate of the Coulomb potential well inside the con-
figuration. Evaluating Eq. (C.3.17) at the radius of the configuration where
the particle free chemical potentials go to zero, we obtain an estimate of the
ratio of the Coulomb potential energy and the gravitational energy close to
the surface of the configuration

eV(R)

Φ(R)
∼ −mp − me

2
. (C.3.18)

Assuming that the system is at nuclear density, ρ ∼ mp/λ3
π where λπ =

h̄/(mπc) is the pion Compton wavelength, the mass and the radius of the con-
figuration are roughly given by M ∼ m3

Planck/m2
p and R ∼ λπ(mPlanck/mp)

and therefore the gravitational potential will be Φ(R) = −GM/R ∼ (mπ/mp)c2.
Consequently, the Coulomb potential energy close to the border is approxi-
mately eV(R) ∼ mπc2/2. Assuming a constant charge density approxima-
tion, the Coulomb potential energy at the center of the configuration is 3/2
times its value at the surface, thus we obtain approximately

eV(0) ∼ 3

4
mπc2 , (C.3.19)

which is in full agreement with both with the numerical results and with
the general relativistic formulas given by Eqs. (21) and (22) of Rotondo et al.
(2011d). This numerical value is also in line with the Coulomb potential well
obtained from the idealized treatment presented in Ruffini (2008c); Popov
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(2010); Rotondo et al. (2011e,c).
In the weak-field non-relativistic limit, the Einstein-Maxwell equations (C.3.4)–

(C.3.9) become

M′ = 4πr2ρ(r) , (C.3.20)

Φ′ =
GM

r2
, (C.3.21)

P′ = −GM

r2
ρ −

[

np −
(2me)3/2

3π2h̄3
(V̂ − meΦ)3/2

]

V̂ ′ , (C.3.22)

V̂ ′′ +
2

r
V̂ ′ = −4πe2

[

np −
(2me)3/2

3π2h̄3
(V̂ − meΦ)3/2

]

, (C.3.23)

where ρ in this case is the rest-mass density

ρ = ∑
i=n,p,e

mini . (C.3.24)

The solution of Eqs. (C.3.14), (C.3.20)–(C.3.23) together with the β-equilibrium
condition (C.3.16) leads to qualitatively similar electrodynamical properties
as the one obtained in the general relativistic case. In Fig. C.5 we show the
electric field in the region r < Rn (RNewt

n < RGR
n ) both for the Newtonian as

well as for the General Relativistic configuration for the given central den-
sity ρ(0) = 3.94ρnuc. From the quantitative point of view, the electric field
of the Newtonian configuration is larger than the electric field of the general
relativistic configuration.

C.3.4. Introducing strong interactions

It is clear now that if one considers a fluid of only neutrons, protons, and
electrons in β-equilibrium neglecting the effects of the strong interactions and
the presence of a crust, then the electromagnetic structure is the one shown
in Figs. C.4 and C.5.

The effect of having different radii Rn, Rp, and Re needs to be also studied
in the more general case when strong interactions and the presence of the
crust of the neutron star are included. The complete study of such a problem
must to be necessarily done within a fully relativistic approach taking into
account the strong, weak, electromagnetic, and gravitational interactions.

Indeed, in the mean time we have given an essential step forward in Rueda
et al. (2011) by formulating such a treatment. The nuclear interactions have
been there included through the Walecka model (see Duerr (1956); Walecka
(1974) for details, and Bowers et al. (1973b,a) for a similar theory) in which nu-
cleons interact by Yukawa-like couplings. The strong interaction between nu-
cleons is thus described by the exchange of three virtual mesons: an isoscalar
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Figure C.5.: Electric field (multiplied by 1014) in units of the critical field Ec =
m2

e c3/(eh̄) ∼ 1016 Volt/cm in the region r < Rn both for the Newtonian and
the General Relativistic configurations. The central density of both systems
is ρ(0) = 3.94ρnuc where ρnuc = 2.7 × 1014 g cm−3 is the nuclear density.
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meson field σ providing the attractive long-range part of the nuclear force;
the massive vector field ωµ that models the repulsive short range and; the
massive isovector field ρµ which takes account of the isospin effects of nuclei
(see also Boguta and Bodmer (1977); Ring (1996)).

As shown in Rueda et al. (2011), the more general Einstein-Maxwell-Thomas-
Fermi equations including strong interactions which generalizes Eqs. (C.3.65)–
(C.3.71) can be written as (in units with h̄ = c = 1)

e−λ(r)

(

1

r2
− λ′

r

)

− 1

r2
= −8πGT0

0 , (C.3.25)

e−λ(r)

(

1

r2
+

ν′

r

)

− 1

r2
= −8πGT1

1 , (C.3.26)

∇µ∇µV = −4πeλeJch
0 , (C.3.27)

∇µ∇µσ = eλ [∂σU(σ) + gσns] , (C.3.28)

∇µ∇µω = −eλ(gω J0
ω − m2

ωω), (C.3.29)

∇µ∇µρ = −eλ(gρ J0
ρ − m2

ρρ), (C.3.30)

Ee = eν/2µe − eV = constant, (C.3.31)

Ep = eν/2µp + Vp = constant, (C.3.32)

En = eν/2µn + Vn = constant, (C.3.33)

eν/2T = constant, (C.3.34)

where ∇µ∇µ = d2/dr2 + [2/r − (1/2)(ν′ + λ′)]d/dr, being ∇µ the covariant
derivative and

Vp = gωω + gρρ + eV, (C.3.35)

Vn = gωω − gρρ, (C.3.36)

are the effective potentials of nucleons, being V ≡ A0, ω ≡ ω0, ρ ≡ ω0 the
time components of the electromagnetic and the meson potentials, and gσ ,
gω, gρ denote the coupling constants between the nucleons and the massive
mesons. The self-interaction scalar field potential U(σ) can be in general a
quartic-order polynom for a renormalizable theory (see e.g. Lee and Wick
(1974)).

The scalar density is given by ns = ∂E/∂m̃N where m̃N = mN + gσσ is the
effective nucleon mass. The only non-vanishing components of the currents
are

Jch
0 = (np − ne)u0, (C.3.37)

Jω
0 = (nn + np)u0, (C.3.38)

J
ρ
0 = (np − nn)u0, (C.3.39)
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where u0 =
√

g00 = eν/2 is the covariant time component of the four-velocity
of the fluid.

The function λ(r) satisfies also in this case Eq. (C.3.10) and the energy-
momentum tensor is

Tµν = T
µν
f + T

µν
γ + T

µν
σ + T

µν
ω + T

µν
ρ , (C.3.40)

where

T
µν
γ = − 1

4π

(

F
µ
α Fαν +

1

4
gµνFαβFαβ

)

, (C.3.41)

T
µν
σ = ∇µ∇νσ − gµν

[

1

2
∇σσ∇σσ − U(σ)

]

, (C.3.42)

T
µν
ω = −Ω

µ
αΩαν − 1

4
gµνΩαβΩαβ

+ m2
ω

(

ωµων − 1

2
gµνωαωα

)

, (C.3.43)

T
µν
ρ = −R

µ
αR

αν − 1

4
gµν

RαβR
αβ

+ m2
ρ

(

R
µ
R

ν − 1

2
gµν

Rαωα

)

, (C.3.44)

T
µν
f = (E+ P)uµuν − Pgµν, (C.3.45)

where Ωµν ≡ ∂µων − ∂νωµ, Rµν ≡ ∂µρν − ∂νρµ, Fµν ≡ ∂µAν − ∂νAµ are the
field strength tensors for the ωµ, ρµ and Aµ fields respectively.

The equilibrium conditions of the constancy of the Klein potentials of the
particles throughout the configuration is expressed by Eqs. (C.3.31)–(C.3.33)
and Eq. (C.3.34) is the Tolman isothermality condition analogous to Eq. (C.3.71).

There are additional contributions of the strong interaction to the nuclear
symmetry energy given within this theory mainly by the ρ-meson. Such con-
tributions change the proton skin structure Rp > Rn shown in this article to
a “neutron skin” effect Rn > Rp in the core-crust boundary layer at nuclear
density Belvedere et al. (2011), in close analogy to the neutron skin observed
in neutron rich nuclei, see e.g. Tamii et al. (2011).

C.3.5. Finite temperature effects

The above results have been obtained within the zero temperature approx-
imation. Temperatures of the order of ∼ 106 K are expected to exist at the
surface of old neutron stars (Tennant et al., 2001; Weisskopf et al., 2004), or
temperatures of 108 − 109 K could, in principle, exist in neutron star interiors.
We are going to show that these thermal effects do not affect the considera-
tions on gravito-polarization here introduced. For neutron stars, the Fermi
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temperature

TF
i =

µi − mic
2

k
, (C.3.46)

where k is the Boltzmann constant, can be as large as ∼ 1012 K for electrons,
∼ 1011 K for protons and ∼ 1013 K for neutrons for typical central densities of
neutron stars. This means that neutron stars interiors are, at a high degree of
accuracy, degenerate systems. However, the total thermal energy of a neutron
star Eth ∼ 1048T2

9 erg (see e.g. Yakovlev and Pethick (2004)) where T9 is the
temperature in units of 109 K, is much larger than the Coulomb energy EC ∼
(1/6)R3E2 ∼ 1016 erg, where E is the internal electric field here considered
(see Figs. C.4 and C.5) and R is the radius of the configuration. It can be then
of interest to ask the question if our electrodynamical structure will still occur
in presence of thermal effects.

In this more general case, the equation of state given by Eqs. (C.3.1) and
(C.3.2), is replaced by

E = ∑
i=n,p,e

2

(2πh̄)3

∫ ∞

0
ǫ̃i(p) fi(p) 4πp2dp , (C.3.47)

P = ∑
i=n,p,e

1

3

2

(2πh̄)3

∫ ∞

0

p2 fi(p)

ǫ̃i(p) + mic2
4πp2dp , (C.3.48)

where

fi(p) =
1

exp[(ǫ̃i(p)− µ̃i)/(kT)] + 1
, (C.3.49)

is the Fermi-Dirac fermion distribution function which gives the particle num-
ber density ni

ni =
2

(2πh̄)3

∫ ∞

0
fi(p) 4πp2dp, , (C.3.50)

where ǫ̃i(p) = ǫi(p)− mic
2 =

√

c2p2 + m2
i c4 − mic

2 and µ̃i are the free single

particle energy and the free particle chemical potential with the particle rest
mass-energy mic

2 subtracted off.

Tolman isothermality and conserved Klein potentials

We turn now to demonstrate the constancy of the Klein potentials and the
constancy of the gravitationally red-shifted temperature throughout the con-
figuration.

The equation of state (C.3.47)–(C.3.48) satisfies the thermodynamic law

E+ P − Ts = ∑
i=n,p,e

niµi , (C.3.51)
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where s = S/V is the entropy per unit volume and µi = ∂E/∂ni is the
free-chemical potential of the i-specie. At zero-temperature T = 0, µi =
√

(cPF
i )

2 + m̃2
i c4 and ni = (PF

i )
3/(3π2h̄3), where PF

i denotes the Fermi mo-

mentum of the i-specie.

From Eq. (C.3.51) follows the Gibbs-Duhem relation

dP = ∑
i=n,p,e

nidµi + sdT , (C.3.52)

which can be rewritten as

dP = ∑
i=n,p,e

nidµi +

(

E+ P − ∑
i=n,p,e

niµi

)

dT

T
. (C.3.53)

Using the Gibbs-Duhem relation (C.3.53) the energy-momentum conserva-
tion equation (see Rotondo et al. (2011d) for details)

eν/2dP + eν/2 dν

2
(E+ P) + edV(np − ne) = 0 , (C.3.54)

can be rewritten as

eν/2 ∑
i=n,p,e

ni

(

dµi −
dT

T
µi

)

+ (E+ P)eν/2

(

dT

T

+
1

2
dν

)

+ e(np − ne)dV = 0 . (C.3.55)

The Tolman isothermal condition (Tolman, 1930) (see also Klein (1949)) de-
mands the constancy of the gravitationally red-shifted temperature

dT

T
+

1

2
dν = 0 , or T∞ = eν/2T = constant , (C.3.56)

which can be used into Eq. (C.3.55) to obtain

∑
i=n,p,e

nid(e
ν/2µi) + e(np − ne)dV = 0 . (C.3.57)

We now introduce the generalized chemical potentials, or Klein potentials,
for electrons Ee, protons Ep and neutrons En

Ee = eν/2µe − mec
2 − eV , (C.3.58)

Ep = eν/2µp − mpc2 + eV , (C.3.59)

En = eν/2µn − mnc2 , (C.3.60)
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which in the zero temperature limit are the generalized Fermi energies for
electrons Ee = EF

e , neutrons En = EF
n and protons Ep = EF

p introduced in
Sec. II (see Eq. (C.3.6)). Using Eqs. (C.3.58), (C.3.59) and (C.3.60), Eq. (C.3.57)
becomes

∑
i=n,p,e

nidEi = 0 , (C.3.61)

which leads for independent and non-zero particle number densities ni 6= 0
to the constancy of the Klein potentials (C.3.58)–(C.3.60) for each particle-
species, i.e.

Ee = eν/2µe − mec
2 − eV = constant , (C.3.62)

Ep = eν/2µp − mpc2 + eV = constant , (C.3.63)

En = eν/2µn − mnc2 = constant . (C.3.64)

In the zero temperature limit the constancy of the Klein potential of each
particle-specie becomes the constancy of the generalized Fermi energies in-
troduced in Sec. C.3.2 (see Eqs. (C.3.6)–(C.3.8)). This is a crucial point be-
cause, as discussed in Rotondo et al. (2011d), the constancy of the generalized
Fermi energies proves the impossibility of having a self-consistent configura-
tion fulfilling the condition of local charge neutrality and β-equilibrium (see
e.g. Fig. 1 of Rotondo et al. (2011d)). Further, as shown in Rueda et al. (2011),
the constancy of the Klein potentials holds in the more general case when the
strong interactions between nucleons are taken into account.

Therefore, introducing the new dimensionless variables ηi = µ̃i/(kT) and
βi = kT/(mic

2), the new set of Einstein-Maxwell-Thomas-Fermi equations
generalizing the system (C.3.4)–(C.3.9) to the case of finite temperatures is

M′ = 4πr2 E

c2
− 4πr3

c2
e−ν/2V̂ ′(np − ne) , (C.3.65)

ν′ =
2G

c2

4πr3P/c2 + M − r3E2/c2

r2
(

1 − 2GM
c2r

+ Gr2

c4 E2
) , (C.3.66)

Ee = mec
2eν/2(1 + βeηe)− mec

2 − eV

= constant, (C.3.67)

Ep = mpc2eν/2(1 + βpηp)− mpc2 + eV

= constant, (C.3.68)

En = Ee + Ep − (mn − me − mp)c
2, (C.3.69)

V̂ ′′ +
2

r
V̂ ′
[

1 − r(ν′ + λ′)
4

]

= −4παh̄c eν/2eλ(np

−ne) , (C.3.70)

eν/2βi = constant , i = n, p, e , (C.3.71)
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where Eq. (C.3.69) is the condition of β-equilibrium between neutrons, pro-
tons and electrons, and the number density of the i-specie is given by

ni =
21/2m3

i c3

π2h̄3
β3/2

i (Fi
1/2 + βiF

i
3/2) , (C.3.72)

where we have introduced the relativistic Fermi-Dirac integrals of order j

Fi
j = Fj(ηi, βi) =

∫ ∞

0

xj
(

1 + 1
2 βix

)1/2

1 + ex−ηi
dx . (C.3.73)

The above formulation generalizes to the case of finite temperatures the
Einstein-Maxwell-Thomas-Fermi equations obtained in Rotondo et al. (2011d)
and recalled here in Sec. C.3.2. This formulation can be also straightforwardly
done in the presence of strong interactions generalizing the formulation of
Sec. C.3.4 (see Rueda et al. (2011) for details).

Numerical results

We have integrated numerically the system of equations (C.3.65)–(C.3.71) for
given temperatures T∞ 6= 0. As expected, the results are both qualitatively
and quantitatively similar to the ones obtained with the degenerate approx-
imation. The largest difference we found is at the surface boundary of the
configuration, where, due to the low density of the system, finite tempera-
ture effects are more effective. As an example, we compare in Fig. C.6 the
electron density for r > Rp in the degenerate and in the non-degenerate case

for T∞ = 2.3 × 105 K. For distances r < Rp the results are essentially the
same as in the degenerate case. In the region r << Rn at large densities
> ρnuc = 2.7 × 1014 g/cm3, the electrodynamical properties of the config-
uration i.e. Coulomb potential and electric field remain unperturbed even
for very large temperatures T∞ ∼ 1011 K. This is due to the fact that ther-
mal effects are largely compensated by the gravitational potential as given by
Eq. (C.3.56); the Coulomb interaction is not involved in this balance and is
not affected by the thermal energy.

It is worth to mention that from general computations of the heating and
cooling mechanisms it turns out that neutron star interiors are highly isother-
mal (in the sense of Tolman) due to the high thermal conductivity of degen-
erate particles (Yakovlev and Pethick, 2004). In real neutron stars, the fluid of
neutrons, protons and electrons in β-equilibrium studied in this article does
not extend all the way to the neutron star surface but is confined to the neu-
tron star core surrounded by the neutron star crust. In this more general case,
the surface structure shown in Fig. C.6 is replaced by the crust composed of
nuclei and degenerate electrons. The condition of isothermality breaks down
in the surface non-degenerate layers of the star due to existence of high tem-
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Figure C.6.: Electron number density for r ≥ Rp normalized to its value at
r = Rp both for T = 0 K (degenerate case) and for a finite temperature of

T∞ = 2.3× 105 K.

perature gradients (see e.g. Yakovlev and Pethick (2004), for details).

C.3.6. Concluding Remarks

In this article we have addressed three additional aspects of the description of
a self-gravitating system of neutrons, protons and electrons in β-equilibrium:

1) We have first recall the formulation of the constitutive Einstein-Maxwell-
Thomas-Fermi equations and their solution in the simple case of self-gravitating
neutrons, protons, and electrons in β-equilibrium. The properties of the elec-
tromagnetic structure of the configuration shown in Rotondo et al. (2011d)
have been also recalled; the Coulomb potential energy inside the configura-
tion is eV ∼ mπc2 and the corresponding electric field E ∼ (mp/mPlanck)(mπ/me)2Ec

and explicitly given in Fig. C.4.
2) We have presented the Newtonian limit of the treatment (Rotondo et al.,

2011d) by taking the weak field approximation and the non-relativistic c → ∞

limit of the general relativistic Thomas-Fermi and Einstein-Maxwell equa-
tions (C.3.4)–(C.3.9). The numerical integration of the Newtonian equations
shows that the gravito-electrodynamic structure evidenced in Rotondo et al.
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(2011d) (see also Sec. C.3.2) is already present in the Newtonian regime. We
have also shown how our equations fulfill the Rosseland relation of equilib-
rium (Rosseland, 1924) for an electron-ion ideal gas in the case of a New-
tonian gravitational field, see Eqs. (C.3.17)–(C.3.18), Eqs. (C.3.20)–(C.3.23),
and Eqs. (C.3.4)–(C.3.9). The differences in the electromagnetic structure be-
tween the Newtonian and the general relativistic treatments are very large
(see Fig. C.5).

3) We have recalled in Sec. C.3.4 the extension of the Einstein-Maxwell-
Thomas-Fermi equations (C.3.4)–(C.3.9) to the case when strong interactions
between nucleons are taking into account by introducing the presence of σ,
ω and ρ virtual mesons which mediate nuclear interactions in a Yukawa-like
fashion, following our recent work (Rueda et al., 2011), see Eqs. (C.3.25)–
(C.3.34).

4) We have then extended all our previous works to the case of finite tem-
peratures enforcing the Tolman “isothermal” condition in general relativity.
We have reached a fundamental conclusion: although the thermal energy
stored in old neutron stars with surface temperatures ∼ 106 K (Tennant et al.,
2001; Weisskopf et al., 2004) is much larger than the internal Coulomb energy
(see Sec. C.3.4), still the electromagnetic structure (see Fig. C.5) is unaffected
by the presence of the thermal component. Physically this effect is due to
the very large Fermi energy of the neutrons ∼ 1 GeV, of the protons ∼ 10
MeV and of the electrons ∼ 0.1 GeV, as can be seen from Eq. (C.3.46). In the
general relativistic “isothermal” system there exists a temperature gradient,
compensated by the variation of the gravitational potential as dictated by the
Tolman condition given by Eq. (C.3.56). The Coulomb interaction is not in-
volved in the balance between the thermal and the gravitational energies and
is not affected by the presence of large thermal energies.

We recalled that a surface structure characterized by the presence of three
different radii, one for each particle specie, emerges when global Coulomb ef-
fects are taken into due account. The radius Re in the case T 6= 0 is larger with
respect to the one obtained in the degenerate approximation (see Fig. C.6).
However, in realistic neutron stars the surface structure of Fig. C.6 is replaced
by the surface layers composed of nuclei and non-degenerate electrons where
isothermality breaks down due to existence of high temperature gradients
(Yakovlev and Pethick, 2004).

As a by product, we have given the explicit demonstration of the constancy
throughout the configuration of the Klein potentials of each species in the
more general case of finite temperatures. This generalizes the condition of
the constancy of the general relativistic Fermi energies derived in the special
case T = 0 in Rotondo et al. (2011d).

The above results are relevant to the extension to thermal effects of the rela-
tivistic Feynman-Metropolis-Teller treatment of compressed atoms (Rotondo
et al., 2011c), recently applied to the construction of general relativistic white
dwarf equilibrium configurations (Rotondo et al., 2011b). They are therefore
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relevant for the description of the neutron star crust as well as of hot white
dwarfs.

The study of the Thomas-Fermi equation within the Einstein-Maxwell sys-
tem of equations responds to a precise request of consistency of a theoretical
treatment. As evidenced in Rotondo et al. (2011d) it overcomes the concep-
tual difficulties of the Tolman-Oppenheimer-Volkoff treatment. Nevertheless,
the two treatments when applied to the case of neutrons, protons, and elec-
trons in β-equilibrium do not give quantitative appreciable differences in the
masses and radii of the equilibrium configurations. It becomes therefore nat-
ural to ask under which physical conditions the gravito-polarization effects
become quantitatively relevant.

When strong interactions are considered (Rueda et al., 2011) a new situ-
ation occurs. The neutron star core necessarily presents a sharp boundary
surrounded by a crust of nuclei and electrons described by the generalized
Feynman-Metropolis-Teller treatment presented in Rotondo et al. (2011c). Un-
der these conditions, the entire theoretical treatment presented in this article
and in Rotondo et al. (2011d); Rueda et al. (2011) are not optional and become
a necessity.

The presence of a Coulomb potential affects the structure of the phase-
transition leading to the occurrence of overcritical electric fields through core-
crust boundary interface. Similar electrostatic effects are expected to occur at
the interlayer boundaries within the crust of a neutron star where changes
of the nucleus charge Z and mass number A of the composing nuclei oc-
cur (see e.g. Haensel and Pichon (1994)), as well as at the surface of quark
stars (Alcock et al., 1986; Stejner and Madsen, 2005), at the transition from
the hadronic phase to the color flavor locked phase in hybrid stars (Alford
et al., 2001) and in liquid white dwarfs where it may cause sedimentation of
heavy nuclei (Bildsten and Hall, 2001; Althaus et al., 2010; Garcı́a-Berro et al.,
2010b).

In Fig. C.7 we show the expected behavior of the Coulomb potential as
modeled in the heuristic simplified approach (Ruffini, 2008c; Popov, 2010;
Rotondo et al., 2011e). If the electron Coulomb potential −eV ∼ mπc2 suffers
a sharp increasing in a scale typical of the electron screening length ∼ λe =
h̄/(mec), it will create an electric field of order ∼ (mπ/me)2Ec ∼ 103Ec.

A key result in the present article is that the gravito-polarization effects
survive at finite temperatures and we can therefore proceed to the study of
neutron star configurations through the theoretical framework formulated in
Rueda et al. (2011) and recalled in Sec. C.3.4. It is now possible to confirm
if the phase-transition at the boundary of the neutron star core follows the
idealization advanced in Ruffini (2008c); Popov (2010); Rotondo et al. (2011e)
and shown in Fig. C.7. It is clear that the formation of overcritical fields is of
great astrophysical interest. The mass and thickness of the neutron star crust
in the two alternative treatments are markedly different. The continuity of
the generalized Klein potentials, at the boundary of the core, plays a crucial
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Figure C.7.: Expected enhancement of the electric field at a sharp increasing
of the electron Coulomb potential −eV e.g. at a phase transition from the core
to the crust in a neutron star as modeled in the simplified approach (Ruffini,
2008c; Popov, 2010; Rotondo et al., 2011e). Here Rc denotes the core radius.
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role in the determination of the mass and thickness of the crust (Belvedere
et al., 2011). The process of gravitational collapse of a core endowed with
electromagnetic structure leads to signatures and energetics markedly differ-
ent from the ones of a core endowed uniquely of gravitational interactions
(Ruffini et al., 2003b,a; Ruffini and Xue, 2008; Ruffini et al., 2010b).
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C.4. Neutron star equilibrium configurations within

a fully relativistic theory with strong, weak,

electromagnetic, and gravitational

interactions

C.4.1. Introduction

It is well known that the classic works of Tolman (1939) and of Oppenheimer
and Volkoff (1939), for short TOV, addresses the problem of neutron star equi-
librium configurations composed only of neutrons. For the more general case
when protons and electrons are also considered, in all of the scientific liter-
ature on neutron stars it is assumed that the condition of local charge neu-
trality applies identically to all points of the equilibrium configuration (see
e.g. Haensel et al. (2007)). Consequently, the corresponding solutions in this
more general case of a non-rotating neutron star, are systematically obtained
also on the base of the TOV equations. We have recently shown the the con-
dition of local charge neutrality is

In general, the formulation of the equilibrium of systems composed by dif-
ferent particle species must be established within the framework of statistical
physics of multicomponent systems. Thermodynamic equilibrium of these
systems is warrantied by demanding the constancy throughout the configu-
ration of the generalized chemical potentials, often called “electro-chemical”,
of each of the components of the system; see e.g. Klein (1949); Kodama and
Yamada (1972); Olson and Bailyn (1975). Such generalized potentials include
not only the contribution due to kinetic energy but also the contribution due
to the potential fields, e.g. gravitational and electromagnetic potential ener-
gies per particle, and in the case of rotating stars also the centrifugal poten-
tial. For such systems in presence of gravitational and Coulomb fields, global
electric polarization effects at macroscopic scales occur. The balance of the
gravitational and electric forces acting on ions and electrons in ideal electron-
ion plasma leading to the occurrence of gravito-polarization was pointed out
in the classic work of Rosseland (1924).

If one turns to consider the gravito-polarization effects in neutron stars,
the corresponding theoretical treatment acquires remarkable conceptual and
theoretical complexity, since it must be necessarily formulated consistently
within the Einstein-Maxwell system of equations. Klein (1949) first intro-
duced the constancy of the general relativistic chemical potential of particles,
hereafter “Klein potentials”, in the study of the thermodynamic equilibrium
of a self-gravitating one-component fluid of neutral particles throughout the
configuration within the framework of general relativity. The extension of
the Klein’s work to the case of neutral multicomponent degenerate fluids can
be found in Kodama and Yamada (1972) and to the case of multi-component
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degenerate fluid of charged particles in Olson and Bailyn (1975).
Using the concept of Klein potentials, we have recently proved the impossi-

bility of imposing the condition of local charge neutrality in the simplest case
of a self-gravitating system of degenerate neutrons, protons and electrons in
β-equilibrium Rotondo et al. (2011d): it has been shown that the consistent
treatment of the above system implies the solution of the general relativistic
Thomas-Fermi equations, coupled with the Einstein-Maxwell ones, being the
TOV equations thus superseded.

We have recently formulated the theory of a system of neutrons, protons
and electrons fulfilling strong, electromagnetic, weak and gravitational in-
teractions (Rueda et al., 2011). The role of the Klein first integrals has been
again evidenced and their theoretical formulation in the Einstein-Maxwell
background and in the most general case of finite temperature has been there
presented, generalizing the previous results for the “non-interacting” case
(Rotondo et al., 2011d). The strong interactions, modeled by a relativistic nu-
clear theory, are there described by the introduction of the σ, ω and ρ virtual
mesons (Duerr, 1956; Walecka, 1974; Bowers et al., 1973b,a) (see Subsec. C.4.2
for details).

In this article we construct for the first time the equilibrium configurations
of non-rotating neutron stars following the new approach (Rotondo et al.,
2011d; Rueda et al., 2011). The full set of the Einstein-Maxwell-Thomas-Fermi
equations is solved numerically for zero temperatures and for selected pa-
rameterizations of the nuclear model.

C.4.2. The Constitutive Relativistic Equations

Core Equations

It has been clearly recognized that, since neutron stars cores may reach den-
sity of order ∼ 1016–1017 g/cm3, much larger than the nuclear density ρnuc ∼
2.7 × 1014 g/cm3, approaches for the nuclear interaction between nucleons
based on phenomenological potentials and non-relativistic many-body theo-
ries become inapplicable (see Bowers et al. (1973b,a)). A self-consistent rel-
ativistic and well-tested model for the nuclear interactions has been formu-
lated in Duerr (1956); Walecka (1974); Bowers et al. (1973b,a). Within this
model the nucleons interact with σ, ω and ρ mesons through Yukawa-like
couplings and assuming flat spacetime the equation of state of nuclear mat-
ter has been determined. However, it has been clearly stated in Rotondo
et al. (2011d); Rueda et al. (2011) that, when we turn into a neutron star con-
figuration at nuclear and supranuclear, the global description of the Einstein-
Maxwell-Thomas-Fermi equations is mandatory. Associated to this system
of equations there is a sophisticated eigenvalue problem, especially the one
for the general relativistic Thomas-Fermi equation is necessary in order to
fulfill the global charge neutrality of the system and to consistently describe
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the confinement of the ultrarelativistic electrons.

The strong interactions between nucleons are described by the exchange of
three virtual mesons: σ is an isoscalar meson field providing the attractive
long-range part of the nuclear force; ω is a massive vector field that models
the repulsive short range and; ρ is the massive isovector field that takes ac-
count surface as well as isospin effects of nuclei (see also Boguta and Bodmer
(1977); Ring (1996)).

The total Lagrangian density of the system is given by

L = Lg +L f +Lσ +Lω +Lρ +Lγ +Lint, (C.4.1)

where the Lagrangian densities for the free-fields are

Lg = − R

16πG
, (C.4.2)

Lγ = − 1

16π
FµνFµν, (C.4.3)

Lσ =
1

2
∇µσ∇µσ − U(σ), (C.4.4)

Lω = −1

4
ΩµνΩµν +

1

2
m2

ωωµωµ, (C.4.5)

Lρ = −1

4
RµνR

µν +
1

2
m2

ρρµρµ, (C.4.6)

where Ωµν ≡ ∂µων − ∂νωµ, Rµν ≡ ∂µρν − ∂νρµ, Fµν ≡ ∂µAν − ∂νAµ are the
field strength tensors for the ωµ, ρ and Aµ fields respectively, ∇µ stands for
covariant derivative and R is the Ricci scalar. We adopt the Lorenz gauge for
the fields Aµ, ωµ, and ρµ. The self-interaction scalar field potential U(σ) is
a quartic-order polynom for a renormalizable theory (see e.g. Lee and Wick
(1974)).

The Lagrangian density for the three fermion species is

L f = ∑
i=e,N

ψ̄i

(

iγµDµ − mi

)

ψi, (C.4.7)

where ψN is the nucleon isospin doublet, ψe is the electronic singlet, mi states
for the mass of each particle-specie and Dµ = ∂µ + Γµ, being Γµ the Dirac spin
connections.

The interacting part of the Lagrangian density is, in the minimal coupling
assumption, given by

Lint = −gσσψ̄NψN − gωωµ J
µ
ω − gρρµ J

µ
ρ

+ eAµ J
µ
γ,e − eAµ J

µ
γ,N, (C.4.8)
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where the conserved currents are

J
µ
ω = ψ̄NγµψN, (C.4.9)

J
µ
ρ = ψ̄Nτ3γµψN, (C.4.10)

J
µ
γ,e = ψ̄eγ

µψe, (C.4.11)

J
µ
γ,N = ψ̄N

(

1 + τ3

2

)

γµψN. (C.4.12)

The coupling constants of the σ, ω and ρ-fields are gσ, gω and gρ, and e is
the fundamental electric charge. The Dirac matrices γµ and the isospin Pauli
matrices satisfy the Dirac algebra in curved spacetime (see e.g. Lee and Pang
(1987) for details).

We first introduce the non-rotating spherically symmetric spacetime metric

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2, (C.4.13)

where the ν(r) and λ(r) are only functions of the radial coordinate r.

For very large number of fermions, we adopt the mean-field approximation
in which fermion-field operators are replaced by their expectation values (see
Ruffini and Bonazzola (1969) for details). Within this approximation, the full
system of general relativistic equations can be written in the form

e−λ(r)

(

1

r2
− 1

r

dλ

dr

)

− 1

r2
= −8πGT0

0 , (C.4.14)

e−λ(r)

(

1

r2
+

1

r

dν

dr

)

− 1

r2
= −8πGT1

1 , (C.4.15)

V ′′ +
2

r
V ′
[

1 − r(ν′ + λ′)
4

]

= −4πe eν/2eλ(np − ne), (C.4.16)

d2σ

dr2
+

dσ

dr

[

2

r
− 1

2

(

dν

dr
+

dλ

dr

)]

= eλ [∂σU(σ) + gsns] , (C.4.17)

d2ω

dr2
+

dω

dr

[

2

r
− 1

2

(

dν

dr
+

dλ

dr

)]

= −eλ
(

gω J0
ω − m2

ωω
)

, (C.4.18)

d2ρ

dr2
+

dρ

dr

[

2

r
− 1

2

(

dν

dr
+

dλ

dr

)]

= −eλ
(

gρ J0
ρ − m2

ρρ
)

, (C.4.19)

EF
e = eν/2µe − eV = constant, (C.4.20)

EF
p = eν/2µp + Vp = constant, , (C.4.21)

EF
n = eν/2µn + Vn = constant, , (C.4.22)

where we have introduced the notation ω0 = ω, ρ0 = ρ, and A0 = V for the

temporal components of the meson-fields. Here µi = ∂E/∂ni =
√

(PF
i )

2 + m̃2
i
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and ni = (PF
i )

3/(3π2) are the free-chemical potential and number density of

the i-specie with Fermi momentum PF
i . The particle effective mass is m̃N =

mN + gsσ and m̃e = me and the effective potentials Vp,n are given by

Vp = gωω + gρρ + eV , (C.4.23)

Vn = gωω − gρρ . (C.4.24)

The constancy of the generalized Fermi energies EF
n , EF

p and EF
e , the Klein

potentials, derives from the thermodynamic equilibrium conditions given by
the statistical physics of multicomponent systems, applied to a system of de-
generate neutrons, protons, and electrons within the framework of general
relativity (see Rueda et al. (2011) for details). These constants are linked by
the β-equilibrium between the matter constituents

EF
n = EF

p + EF
e . (C.4.25)

The electron density ne is, via Eq. (C.4.20), given by

ne =
e−3ν/2

3π2
[V̂2 + 2meV̂ − m2

e(e
ν − 1)]3/2 , (C.4.26)

where V̂ ≡ eV + EF
e . Substituting Eq.( C.4.26) into Eq. (C.4.16) one obtains

the general relativistic extension of the relativistic Thomas-Fermi equation re-
cently introduced for the study of compressed atoms (Rotondo et al., 2011c,b).
This system of equations has to be solved with the boundary condition of
global neutrality; see Rotondo et al. (2011d); Rueda et al. (2011) and below
for details.

The scalar density ns, within the mean-field approximation, is given by the
following expectation value

ns = 〈ψ̄NψN〉 =
2

(2π)3 ∑
i=n,p

∫

d3k
m̃N

ǫi(p)
, (C.4.27)

where ǫi(p) =
√

p2 + m̃2
i is the single particle energy.

In the static case, only the temporal components of the covariant currents
survive, i.e. 〈ψ̄(x)γiψ(x)〉 = 0. Thus, by taking the expectation values of
Eqs. (C.2.10)–(C.2.13), we obtain the non-vanishing components of the cur-
rents

Jch
0 = nchu0 = (np − ne)u0, (C.4.28)

Jω
0 = nbu0 = (nn + np)u0, (C.4.29)

J
ρ
0 = n3u0 = (np − nn)u0, (C.4.30)
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where nb = np + nn is the baryon number density and u0 =
√

g00 = eν/2

is the covariant temporal component of the four-velocity of the fluid, which
satisfies uµuµ = 1.

The metric function λ is related to the mass M(r) and the electric field

E(r) = −e−(ν+λ)/2V ′ through

e−λ(r) = 1 − 2GM(r)

r
+ Gr2E2(r)

= 1 − 2GM(r)

r
+

GQ2(r)

r2
, (C.4.31)

being Q(r) the conserved charge, related to the electric field by Q(r) = r2E(r).

The energy-momentum tensor of free-fields and free-fermions Tµν of the
system is

Tµν = T
µν
f + T

µν
γ + T

µν
σ + T

µν
ω + T

µν
ρ , (C.4.32)

where

T
µν
γ = − 1

4π

(

F
µ
α Fαν +

1

4
gµνFαβFαβ

)

, (C.4.33)

T
µν
σ = ∇µ∇νσ − gµν

[

1

2
∇σσ∇σσ − U(σ)

]

, (C.4.34)

T
µν
ω = −Ω

µ
αΩαν − 1

4
gµνΩαβΩαβ

+ m2
ω

(

ωµων − 1

2
gµνωαωα

)

, (C.4.35)

T
µν
ρ = −R

µ
αR

αν − 1

4
gµν

RαβR
αβ

+ m2
ρ

(

R
µ
R

ν − 1

2
gµν

Rαωα

)

, (C.4.36)

T
µν
f = (E+ P)uµuν − Pgµν, (C.4.37)

where the energy-density E and the pressure P are given by

E = ∑
i=n,p,e

Ei, P = ∑
i=n,p,e

Pi, (C.4.38)

being Ei and Pi the single fermion fluid contributions

Ei =
2

(2π)3

∫ PF
i

0
ǫi(p) 4πp2dp, (C.4.39)

Pi =
1

3

2

(2π)3

∫ PF
i

0

p2

ǫi(p)
4πp2dp. (C.4.40)
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It is worth to recall that the equation of state (C.4.38)–(C.4.40) satisfies the
thermodynamic law

E+ P = ∑
i=n,p,e

niµi. (C.4.41)

The parameters of the nuclear model, namely the coupling constants gs,
gω and gρ, and the meson masses mσ, mω and mρ are usually fixed by fitting
experimental properties of nuclei, e.g. saturation density, binding energy per
nucleon (or experimental masses), symmetry energy, surface energy, and nu-
clear incompressibility. In Table C.1 we present selected fits of the nuclear pa-
rameters. In particular, we show the following parameter sets: NL3 (Lalazis-
sis et al., 1997), NL-SH (Sharma et al., 1993), TM1 (Sugahara and Toki, 1994),
and TM2 (Hirata et al., 1995).

NL3 NL-SH TM1 TM2
mσ (MeV) 508.194 526.059 511.198 526.443
mω (MeV) 782.501 783.000 783.000 783.000
mρ (MeV) 763.000 763.000 770.000 770.000
gs 10.2170 10.4440 10.0289 11.4694
gω 12.8680 12.9450 12.6139 14.6377
gρ 4.4740 4.3830 4.6322 4.6783
g2 (fm−1) -10.4310 -6.9099 -7.2325 -4.4440
g3 -28.8850 -15.8337 0.6183 4.6076
c3 0.0000 0.0000 71.3075 84.5318

Table C.1.: Selected parameter sets of the σ-ω-ρ model.

The constants g2 and g3 are the third and fourth order constants of the self-
scalar interaction as given by the scalar self-interaction potential

U(σ) =
1

2
m2

σσ2 +
1

3
g2σ3 +

1

4
g3σ4 . (C.4.42)

The non-zero constant c3 that appears in the TM1 and TM2 models corre-
sponds to the self-coupling constant of the non-linear vector self-coupling
1
4 c3(ωµωµ)2. We have not include such a self-coupling vector interaction in
the general formulation presented above. However, we show also here the
results of the integration when such a self-interaction is taken into account
and we refer to Sugahara and Toki (1994); Hirata et al. (1995) for details about
the motivations of including that contribution.

The numerical integration of the core equations can be started given a cen-
tral density and the regularity conditions at the origin; see below Sec. C.4.3
for details. At nuclear density the phase-transition to the “solid” crust takes
place. Thus, the radius of the core Rcore is given by E(r = Rcore)/c2 = ρnuc.
These equations must be solved with the boundary conditions given by the
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fulfillment of the condition of global charge neutrality and the continuity of
the Klein potentials of particles between the core and the crust.

Core-crust transition layer equations

In the core-crust interface, the mean-field approximation for the meson-fields
is not valid any longer and thus a full numerical integration of the meson-
field equations of motion, taking into account all gradient terms, must be
performed. We expect the core-crust transition boundary-layer to be a re-
gion with characteristic length scale of the order of the electron Compton
wavelength ∼ λe = h̄/(mec) ∼ 100 fm corresponding to the electron screen-
ing scale. Then, in the core-crust transition layer, the system of equations
(C.4.14)–(C.4.22) reduces to

V ′′ +
2

r
V ′ = −eλcoreeJ0

ch , (C.4.43)

σ′′ +
2

r
σ′ = eλcore [∂σU(σ) + gsns] , (C.4.44)

ω′′ +
2

r
ω′ = −eλcore

[

gω J0
ω − m2

ωω
]

, (C.4.45)

ρ′′ +
2

r
ρ′ = −eλcore

[

gρ J0
ρ − m2

ρρ
]

, (C.4.46)

eνcore/2µe − eV = constant , (C.4.47)

eνcore/2µp + eV + gωω + gρρ = constant , (C.4.48)

µn = µp + µe + 2 gρρe−νcore/2 , (C.4.49)

due to the fact that the metric functions are essentially constant on the core-
crust transition layer and thus we can take their values at the core-radius

eνcore ≡ eν(Rcore) and eλcore ≡ eλ(Rcore).

The system of equations of the transition layer has a stiff nature due to the
existence of two different scale lengths. The first one is associated with the
nuclear interactions ∼ λπ = h̄/(mπc) ∼ 1.5 fm and the second one is due
to the aforementioned screening length ∼ λe = h̄/(mec) ∼ 100 fm. Thus,
the numerical integration of Eqs. (C.4.43)–(C.4.49) has been performed sub-
dividing the core-crust transition layer in the following three regions: (I) a
mean-field-like region where all the fields vary slowly with length scale ∼ λe,
(II) a strongly interacting region of scale ∼ λπ where the surface tension due
to nuclear interactions dominate producing a sudden decrease of the proton
and the neutron densities and, (III) a Thomas-Fermi-like region of scale ∼ λe

where only a layer of opposite charge made of electrons is present producing
the total screening of the positively charged core. The results of the numeri-
cal integration of the equilibrium equations are shown in Fig. C.8-C.9 for the
NL3-model.
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We have integrated numerically Eqs. (C.4.14)–(C.4.22) for the models listed
in Table C.1. The boundary conditions for the numerical integration are fixed
through the following procedure. We start assuming a value for the central
baryon number density nb(0) = nn(0) + np(0). From the regularity condi-

tions at the origin we have e−λ(0) = 1 and ne(0) = np(0).

The metric function ν at the origin can be chosen arbitrarily, e.g. ν(0) =
0, due to the fact that the system of equations remain invariant under the
shift ν → ν+ constant. The right value of ν is obtained once the end of the
integration of the core has been accomplished and duly matched to the crust,
by fulfilling the following identity at the surface of the neutron star,

eν(R) = e−λ(R) = 1 − 2GM(R)

c2R
, (C.4.50)

being M(R) and R the total mass and radius of the star. Then, taking into
account the above conditions, we solve the system (C.4.17)–(C.4.22) at the
origin for the other unknowns σ(0), ω(0), ρ(0), nn(0), np(0), ne(0).

The initial conditions for the numerical integration of the core-crust transi-
tion layer equations are determined by the final values given by the numeri-
cal integration of the core equations, i.e. we take the values of all the variables
at the core-radius Rcore.

In the region I the effect of the Coulomb interaction is clear: on the proton-
profile we can see a bump due to Coulomb repulsion while the electron-
profile decreases as expected. Such a Coulomb effect is indirectly felt also
by the neutrons due to the coupled nature of the system of equations. How-
ever, the neutron-bump is much smaller than the one of protons and it is
not appreciable in Fig. C.8-C.9 due to the plot-scale. In the region II we see
clearly the effect of the surface tension due to nuclear interaction which pro-
duces a sharp decrease of the neutron and proton profiles in a characteristic
scale ∼ λπ. In addition, it can be seen a neutron skin effect, analogous to the
one observed in heavy nuclei, which makes the scale of the neutron density
falloff slightly larger with respect to the proton one, in close analogy to the
neutron skin effect observed in neutron rich nuclei, see e.g. Tamii et al. (2011).
The region III is characterized by a smooth decreasing of the electron density
which resembles the behavior of the electrons surrounding a nucleus in the
Thomas-Fermi model.

The matching to the crust must be done at the radius Rcore + δR where
full charge neutrality is reached. The thickness of the core-crust transition
boundary layer δR as well as the value of the electron density at the edge of
the crust, Rcore + δR, depends on the nuclear parameters, especially on the
nuclear surface tension.

The equilibrium conditions given by the constancy of the Klein potentials
(C.4.20)–(C.4.22) throughout the configuration, impose in the transition layer

1535



C. Neutron Stars Physics and Astrophysics

0
200

600

1000

1400

1800

2200

E
/
E

c

0 100 200 300 400 500 600 700
(rVRcore)/WX

1034
1035
1036
1037
1038

n
n
,n

p
,n

e
(c
m

Y

3
)

neutrons
protons
electrons

Figure C.8.: Upper panel: electric field in the core-crust transition layer in
units of the critical field Ec. Lower panel: particle density profiles in the core-
crust boundary interface in units of cm−3. Here we use the NL3-model of
Table C.1 and λσ = h̄/(mσc) ∼ 0.4 fm denotes the sigma-meson Compton
wavelength. The density at the edge of the crust in this example is ρcrust =
ρdrip = 4.3 × 1011 g/cm3.

the following continuity condition

eνcore/2µcore
e − eVcore = eνcrust/2µcrust

e . (C.4.51)

where µcore
e = µe(Rcore), eVcore = eV(Rcore), and µcrust

e = µe(Rcore + δR), and
eνcrust ≃ eνcore .

The electron chemical potential and the density decrease, in the boundary
interface, until values µcrust

e < µcore
e and ρcrust < ρcore. For each central den-

sity, an entire family of core-crust interface boundaries and, correspondingly,
an entire family of crusts with different mass and thickness, exist. The config-
uration with ρcrust = ρdrip ∼ 4.3 × 1011 g/cm3 separates neutron stars with
and without inner crust. In the so-called inner crust, the neutrons dripped
from the nuclei in the crust form a fluid that coexist with the nuclei lattice
and the degenerate electrons (Baym et al., 1971a). The presence of the neu-
tron fluid in the crust changes the nuclear surface tension at the core radius, in
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Figure C.9.: The same as Fig. C.8, but setting gρ = 0 in order to see the effects
of the ρ-meson with respect to the case gρ 6= 0.

close analogy to the reduction of the surface tension of the nuclei in the crust
due to the presence of the dripped neutrons, see e.g. Baym et al. (1971a)) for
details. This reduction of the nuclear tension is not taken into account in the
nuclear parameters which are obtained to fit the properties of bare nuclei, see
Table C.1. Thus we present here the results for configurations ρcrust ≤ ρdrip,
i.e for neutron stars possessing only outer crust. The construction of configu-
rations with ρcrust > ρdrip needs to be studied in more detail and will be the
subject of a forthcoming work.

In Figs. C.8 and C.9, we show the core-crust transition layer for the NL3
model of Table C.1 with and without the presence of the ρ-meson respectively.
The presence of the ρ-meson is responsible for the nuclear asymmetry within
this nuclear model. The relevance of the nuclear symmetry energy on the
structure of nuclei and neutron stars is continuously stressed in literature;
see e.g. Müther et al. (1987); Kubis (2007); Sharma and Pal (2009); Hebeler
et al. (2010); Loan et al. (2011). The precise value of the nuclear symmetry
energy plays here a crucial in determining the precise value of the ρ-meson
coupling which, in the present case, is essential in the determination of the
intensity of the electric field in the core-crust boundary interface; as can be
seen from the comparison of Figs. C.8 and C.9.
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Crust equations

Turning now to the crust, it is clear from our recent treatment of white dwarfs
(Rotondo et al., 2011b) that also this problem can be solved by the adop-
tion of Wigner-Seitz cells and from the relativistic Feynman-Metropolis-Teller
(RFMT) approach (Rotondo et al., 2011c) it follows that the crust is clearly
neutral. Thus, the structure equations to be integrated are the TOV equations

dP

dr
= −G(E+ P)(M + 4πr3P)

r2(1 − 2GM
r )

, (C.4.52)

dM

dr
= 4πr2

E, (C.4.53)

where M = M(r) is the mass enclosed at the radius r.

The effects of the Coulomb interaction in “solid”-like electron-ion systems
appears only at the microscopic level e.g. Debye-Hueckel screening in classi-
cal systems (Debye and Hueckerl, 1923) and Thomas-Fermi screening in the
degenerate case (Mott, 1936). In order to analyze the effects of the micro-
scopic screening on the structure of the configuration we will consider two
equations of state for the crust: the locally neutral case or uniform approxi-
mation (see e.g. Chandrasekhar (1931b)) and, for simplicity, instead of using
the RFMT EoS (Rotondo et al., 2011c), we use as second EoS the one due to
Baym, Pethick and Sutherland (BPS) (Baym et al., 1971a), which is by far the
most used equation of state in literature for the description of the neutron
star crust (see e.g. Haensel et al. (2007)).

In the uniform approximation, both the degenerate electrons and the nu-
cleons distribution are considered constant inside each cell of volume Vws.
This kind of configuration can be obtained only imposing microscopically
the condition of local charge neutrality

ne =
Z

Vws
. (C.4.54)

The total pressure of the system is assumed to be entirely due to the elec-
trons, i.e.

P = Pe =
2

3 (2πh̄)3

∫ PF
e

0

c2p24πp2

√

c2p2 + m2
e c4

dp, (C.4.55)

while the total energy-density of the system is due to the nuclei, i.e. E=(A/Z)mN ne,
where mN is the nucleon mass.

We turn now to the BPS equation of state. The first correction to the uni-
form model, corresponds to abandon the assumption of the electron-nucleon
fluid through the so-called “lattice” model which introduces the concept of
Wigner-Seitz cell: each cell of radius Rws contains a point-like nucleus of
charge +Ze with A nucleons surrounded by a uniformly distributed cloud
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of Z fully-degenerate electrons.
The sequence of the equilibrium nuclides present at each density in the

BPS equation of state is obtained by looking for the nuclear composition that
minimizes the energy per nucleon for each fixed nuclear composition (Z, A)
(see Table C.2 and Baym et al. (1971a) for details). The pressure P and the
energy-density E of the system are, within this model, given by

P = Pe +
1

3
WLnN , (C.4.56)

E

nb
=

WN + WL

A
+

Ee(nbZ/A)

nb
, (C.4.57)

where the electron energy-density is given by

Ee =
2

(2π)3

∫ PF
e

0

√

p2 + m2
e 4πp2dp, (C.4.58)

and WN(A, Z) is the total energy of an isolated nucleus given by the semi-
empirical formula

WN = mnc2(A − Z) + mpc2Z − bA, (C.4.59)

with b being the Myers and Swiatecki binding energy per nucleon (Myers,
1966). The lattice energy per nucleus WL is given by

WL = −1.819620Z2e2

a
, (C.4.60)

where the lattice constant a is related to the nucleon density nN by nNa3 = 2.

C.4.3. Neutron star structure

In the traditional TOV treatment the density and the pressure are a priori
assumed to be continuous as well as the local charge neutrality of the system.
The distinguishing feature of our new solution is that the Klein potentials are
constant throughout the three regions; the core, the crust and the transition
interface boundary. An overcritical electric field is formed and consequently
a discontinuity in density is found with a continuous total pressure including
the surface tension of the boundary. In Figs. C.10 and C.11, we compare and
contrast the density profiles of configurations obtained from the traditional
TOV treatment and with the treatment presented here.

In Figs. C.12–C.18 we show the results of the numerical integration of the
system of the general relativistic constitutive equations of the configuration
from the center all the way up to the surface with the appropriate boundary
conditions between the involved phases. In particular, we have plotted the
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mass-radius relation as well as the compactness of the neutron stars obtained
with the models listed in Table C.1.

It is worth to note that the inclusion of the Coulomb interaction and in par-
ticular the presence of the negative lattice energy WL results in a decreasing
of the pressure of the cells. Such an effect, as shown in Fig. C.15–C.18, leads
to a decreasing of the mass and the thickness of the crust with respect to the
uniform-approximation case where no Coulomb interactions are taken into
account.

Comparing the mass and the thickness of the crust obtained with these two
different EoS, we obtain systematically crusts with smaller mass and larger
thickness when Coulomb interactions are taken into account. This results are
in line with the recent results in Rotondo et al. (2011b), where the mass-radius
relation of white-dwarfs has been calculated using an EoS based on the rel-
ativistic Feynman-Metropolis-Teller model for compressed atoms (Rotondo
et al., 2011c).

In the case of the BPS EoS, the average nuclear composition in the outer
crust, namely the average charge to mass ratio of nuclei Z/A, is obtained by
calculating the contribution of each nuclear composition present to the mass
of the crust. We exemplified the analysis for two different cores: Mcore =
2.56M⊙, Rcore = 12.79 km; Mcore = 1.35M⊙, Rcore = 11.76 km. The relative
abundance of each nuclide within the crust of the star can be obtained as

R.A. =
1

MBPS
crust

∫

∆r
4πr2

Edr , (C.4.61)

where the integration is carried out in the layer of thickness ∆r where the par-
ticular nuclide is present; see C.2 and Fig. C.19. Our results are in agreement
with the analysis on the neutron star crust composition obtained in Goriely
et al. (2011a,b). In both cases we obtain as average nuclear composition 105

35 Br.

The corresponding crusts with fixed nuclear composition 105
35 Br for the two

chosen cores are calculated neglecting Coulomb interactions (i.e. using the
first EoS). The mass and the thickness of these crusts with fixed 105

35 Br are dif-
ferent with respect to the ones obtained using the full BPS EoS, leading to
such average nuclear composition. For the two selected examples we obtain
that the mass and the thickness of the crust with average 105

35 Br are, respec-
tively, 18% larger and 5% smaller with respect to the ones obtained with the
corresponding BPS EoS. This result shows how small microscopic effects due
to the Coulomb interaction in the crust of the neutron star leads to quantita-
tive not negligible effects on the macroscopic structure of the configuration.
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Equilibrium Nuclei Below Neutron Drip

Nucleus Z ρmax(g cm−3) ∆ R1 (km) R.A.1(%) ∆ R2 (km) R.A.2(%)
56Fe 26 8.1 × 106 0.0165 7.56652× 10−7 0.0064 6.96927× 10−7

62Ni 28 2.7 × 108 0.0310 0.00010 0.0121 0.00009
64Ni 28 1.2 × 109 0.0364 0.00057 0.0141 0.00054
84Se 34 8.2 × 109 0.0046 0.00722 0.0017 0.00683
82Ge 32 2.2 × 1010 0.0100 0.02071 0.0039 0.01983
80Zn 38 4.8 × 1010 0.1085 0.04521 0.0416 0.04384
78Ni 28 1.6 × 1011 0.0531 0.25635 0.0203 0.25305
76Fe 26 1.8 × 1011 0.0569 0.04193 0.0215 0.04183

124Mo 42 1.9 × 1011 0.0715 0.02078 0.0268 0.02076
122Zr 40 2.7 × 1011 0.0341 0.20730 0.0127 0.20811
120Sr 38 3.7 × 1011 0.0389 0.23898 0.0145 0.24167
118Kr 36 4.3 × 1011 0.0101 0.16081 0.0038 0.16344

Table C.2.: ρmax is the maximum density at which the nuclide is present;∆ R1,
∆ R2 and R.A.1(%), R.A.2(%) are rispectively the thickness of the layer where
a given nuclide is present and their relative abundances in the outer crust for
two different cases: Mcore = 2.56M⊙, Rcore = 12.79 km; Mcore = 1.35M⊙,
Rcore = 11.76 km.

C.4.4. Observational constraints on the mass-radius relation

It has been recently pointed out that the most up-to-date stringent constraints
to the mass-radius relation of neutron stars are provided by the largest mass,
the largest radius, the highest rotational frequency, and the maximum surface
gravity, observed for pulsars (Trümper, 2011).

So far, the highest neutron star mass measured with a high level of experi-
mental confidence is the mass of the 3.15 millisecond pulsar PSR J1614-2230,
M = 1.97± 0.04M⊙, obtained from the Shapiro time delay and the Keplerian
orbital parameters of the binary system (Demorest et al., 2010). The fitting of
the thermonuclear burst oscillation light curves from the accreting millisec-
ond pulsar XTE J1814-338 weakly constrain the mass-radius relation impos-
ing an upper limit to the surface gravity of the neutron star, GM/(c2R) < 0.24
(Bhattacharyya et al., 2005). A lower limit of the radius of RX J1856-3754, as
seen by an observer at infinity R∞ = R[1 − 2GM/(c2R)]−1/2 > 16.8 km,
has been obtained from the fit of the optical and X-ray spectra of the source
(Trümper et al., 2004); it gives the constraint 2GM/c2 > R − R3/(Rmin

∞ )2,
being Rmin

∞ = 16.8 km. Assuming a neutron star of M = 1.4M⊙ to fit the
Chandra data of the low-mass X-ray binary X7, it turns out that the radius

of the star satisfies R = 14.5+1.8
−1.6 km, at 90% confidence level, corresponding

to R∞ = [15.64, 18.86] km, respectively (see Heinke et al. (2006) for details).
The maximum rotation rate of a neutron star taking into account both the
effects of general relativity and deformations has been found to be νmax =
1045(M/M⊙)1/2(10 km/R)3/2 Hz, largely independent of the equation of
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M(M⊙) RNL3 RNL−SH RTM1 RTM2

1.40 12.31 12.47 12.53 12.93
1.93 12.96 13.14 13.13 13.73
2.01 13.02 13.20 13.17 13.82

Table C.3.: Radii (in km) predicted by the nuclear parametrizations NL3, NL-
Sh, TM1 and TM2 of Table C.1, for a canonical neutron star of M = 1.4M⊙
and for the millisecond pulsar PSR J1614-2230, M = 1.97± 0.04M⊙.

state (Lattimer and Prakash, 2004). The fastest observed pulsar is PSR J1748-
2246ad with a rotation frequency of 716 Hz (Hessels et al., 2006), which re-
sults in the constraint M ≥ 0.47(R/10 km)3M⊙. In Fig. C.20 we show all
these constraints and the mass-radius relation presented in this article.

As discussed by J. E. Trümper in Trümper (2011), the above constraints
strongly favor stiff equations of state which provide high maximum masses
for neutron stars. In addition, putting all of them together, the radius of a
canonical neutron star of mass M = 1.4M⊙ is highly constrained to the range
R & 12 km disfavoring, at the same time, the strange quark hypothesis for
these specific objects. It is clear from Fig. C.20 that the mass-radius relation
presented here is consistent with all the observation constraints, for all the
nuclear parametrizations of Table C.1. We present in Table C.3, the radii pre-
dicted by our mass-radius relation for a canonical neutron star of M = 1.4M⊙
as well as for the millisecond pulsar PSR J1614-2230, M = 1.97± 0.04M⊙.

C.4.5. Comparison with the traditional TOV treatment

In the traditional TOV treatment local charge neutrality as well as the con-
tinuity of the pressure and the density in the core-crust transition are as-
sumed. This leads to explicit violation of the constancy of the Klein poten-
tials throughout the configuration (see e.g. Rotondo et al. (2011d)). In such
a case there is a smooth transition from the core to the crust without any
density discontinuity and therefore the density at the edge of the crust is
∼ ρnuc ∼ 2.7 × 1014 g/cm3. The so-called inner crust in those configura-
tions extends in the range of densities ρdrip . ρ . ρnuc while, at densities
ρ . ρdrip, there is the so-called outer crust.

Due to the continuity of the Klein potentials in the transition from the core
to the crust, there is a decrease of the Coulomb potential from ∼ mπc2/e at the
core radius Rcore down to zero at the edge of the neutral crust.Correspondingly,
the electron chemical potential decreases from its value at the core radius un-

til a value approximately given by µcrust
e ∼ µ

drip
e ∼ 26 MeV (see Fig. C.8-

C.9). Therefore, no crusts with densities larger than the neutron drip density
ρdrip ∼ 4.3 × 1011 g/cm3 exist, leading to crusts made only of outer crust.

In Figs. C.21 and C.22 we compare and contrast the mass and the thickness
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of the crust as obtained from the traditional TOV treatment with the new
configurations presented here.

The markedly differences both in mass and thickness of the crusts (see
Figs. C.21 and C.22) obtained from the traditional Tolman-Oppenheimer-Volkoff
approach and the new equilibrium configurations presented here, leads to
a very different mass-radius relations which we compare and contrast in
Fig. C.23.

C.4.6. Concluding Remarks

We have formulated the equations of equilibrium of neutron stars based on
our recent works (Rueda et al., 2011; Rotondo et al., 2011c,b,d). The strong,
weak, electromagnetic, and gravitational interactions are taken into due ac-
count within the framework of general relativity. In particular, the strong
interactions between nucleons is described by the exchange of the σ, ω, and ρ
mesons. The equilibrium conditions are given by the set of Einstein-Maxwell-
Thomas-Fermi equations and by the constancy of the general relativistic Fermi
energies of particles, the Klein potentials, throughout the configuration.

We have solved these equilibrium equations numerically, in the case of zero
temperatures, for the nuclear parameter sets NL3 (Lalazissis et al., 1997), NL-
SH (Sharma et al., 1993), TM1 (Sugahara and Toki, 1994), and TM2 (Hirata
et al., 1995); see Table C.1 for details.

A new structure of the star is found: the positively charged core at supranu-
clear densities is surrounded by an electronic distribution of thickness &
h̄/(mec) ∼ 102h̄/(mπc) of opposite charge and, at lower densities, a neutral
ordinary crust.

In the core interior the Coulomb potential well is ∼ mπc2/e and corre-
spondingly the electric field is ∼ (mp/mPlanck)(mπ/me)2Ec ∼ 10−14Ec. Due
to the equilibrium condition given by the constancy of the Klein potentials,
there is a discontinuity in the density at the transition from the core to the
crust, and correspondingly an overcritical electric field ∼ (mπ/me)2Ec devel-
ops in the boundary interface; see Fig. C.8–C.9.

The continuity of the Klein potentials at the core-crust boundary inter-
face leads to a decreasing of the electron chemical potential and density, un-
til values µcrust

e < µcore
e and ρcrust < ρcore at the edge of the crust, where

global charge neutrality is achieved. For each central density, an entire fam-
ily of core-crust interface boundaries and, correspondingly, an entire family
of crusts with different mass and thickness, exist. The larger ρcrust, the smaller
the thickness of the interface, the peak of the electric field, and the larger the
mass and the thickness of the crust. The configuration with ρcrust = ρdrip ∼
4.3 × 1011 g/cm3 separates neutron stars with and without inner crust. The
neutron stars with ρcrust > ρdrip deserve a further analysis in order to account
for the reduction of the nuclear tension at the core-crust transition due to the
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presence of dripped neutrons from the nuclei in the crust.
All the above new features lead to crusts with masses and thickness smaller

than the ones obtained from the traditional TOV treatment, and we have
shown specifically neutron stars with ρcrust = ρdrip; see Figs. C.21–C.22. The
mass-radius relation obtained in this case have been compared and contrasted
with the one obtained from the locally neutral TOV approach; see Fig. C.23.
We have shown that our mass-radius relation is in line with observations,
based on the recent work by J. E. Trümper (Trümper, 2011); see Fig. C.20 for
details.

The electromagnetic structure of the neutron star presented here is of clear
astrophysical relevance. The process of gravitational collapse of a core en-
dowed with electromagnetic structure leads to signatures and energetics markedly
different from the ones of a core endowed uniquely of gravitational interac-
tions; see e.g. Ruffini et al. (2003b,a); Ruffini and Xue (2008); Ruffini et al.
(2010b).

It is clear that the release of gravitational energy in the process of gravita-
tional collapse of the core, following the classic work of Gamow and Schoen-
berg (1941), is carried away by neutrinos. The additional nuclear and electro-
magnetic energy ∼ 1051 erg of the collapsing core introduced in this article
are expected to be carried away by electron-positron plasma created in the
overcritical electromagnetic field in the collapsing core.
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Figure C.10.: Upper panel: electric field in the core-crust transition layer,
in units of the critical field Ec. Middle panel: particle density profiles in
the core-crust boundary interface, in units of cm−3. Lower panel: density
profile inside a neutron star with central density ρ(0) ∼ 5ρnuc. We com-
pare and contrast the structural differences between the solution obtained
from the traditional TOV equations (locally neutral case) and the globally
neutral solution presented here. We use here the NL3 nuclear parametriza-
tion of Table C.1 and λσ = h̄/(mσc) ∼ 0.4 fm, denotes the sigma-meson
Compton wavelength. In this example the density at the edge of the crust is
ρcrust = ρdrip = 4.3 × 1011 g/cm3.

1545



C. Neutron Stars Physics and Astrophysics

0 300 600 900 1200 1500 1800

1034

1036

1038

n
i
(c
m

d

3
)

(reRcore)/fg

neutrons
protons
electrons

0

600

1200

1800

E
/
E
c

0 2 4 6 8 10 12

108

1011

1014

h

(g
/
cm

3
)

CORE

Global Neutrality
Local Neutrality

12.5 12.8 13.1 13.4

108

1011

1014CRUST

r (km)

Figure C.11.: Same as Fig. C.10. In this example the density at the edge of the
crust is ρcrust = 1010 g/cm3.
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Figure C.12.: Mass-Radius relation for the neutron stars obtained with the
nuclear models listed in Table C.1. In the crust we have used the BPS equation
of state. The mass is given in solar masses and the radius in km.
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Figure C.13.: Compactness of the star GM/(c2R) as a function of the star
mass M. In the crust we have used the BPS equation of state and the nuclear
models are in Table C.1.
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Figure C.14.: Compactness of the star GM/(c2R) as a function of the star
radius R. In the crust we have used the BPS equation of state and the nuclear
models are in Table C.1.
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Figure C.15.: Mass of the crust as a function of the compactness for the crust
EoS without Coulomb interactions.

1550



C.4. Neutron star equilibrium configurations within a fully relativistic
theory with strong, weak, electromagnetic, and gravitational interactions

0.5 1.0 1.5 2.0 2.5 3.0
M/M⊙

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

∆
R

N
O
−C

cr
u
st

(k
m
)

NL3
NL−SH
TM1
TM2

Figure C.16.: Crust-thickness as a function of the compactness for the crust
EoS without Coulomb interactions.
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Figure C.17.: Crust mass as a function of the compactness for crust with the
BPS EoS.
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Figure C.18.: Crust thickness as a function of the compactness for crust with
the BPS EoS.
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Figure C.19.: Relative abundances of chemical elements in the crust for the
two cores analyzed in Table C.2
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Figure C.20.: Constraints on the mass-radius relation given by J. E. Trümper
in Trümper (2011) and the theoretical mass-radius relation presented in this
article in Fig. C.12. The solid line is the upper limit of the surface gravity
of XTE J1814-338, the dotted-dashed curve corresponds to the lower limit to
the radius of RX J1856-3754, the dashed line is the constraint imposed by
the fastest spinning pulsar PSR J1748-2246ad, and the dotted curves are the
90% confidence level contours of constant R∞ of the neutron star in the low-
mass X-ray binary X7. Any mass-radius relation should pass through the
area delimited by the solid, the dashed and the dotted lines and, in addition,
it must have a maximum mass larger than the mass of PSR J1614-2230, M =
1.97 ± 0.04M⊙.
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Figure C.21.: Mass of the crust given by the traditional locally neutral
Tolman-Oppenheimer-Volkoff treatment and by the new globally neutral
equilibrium configurations presented in this article. We use here the NL3
nuclear model, see Table C.1.
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Figure C.22.: Thickness of the crust given by the traditional locally neu-
tral Tolman-Oppenheimer-Volkoff treatment and by the new globally neutral
equilibrium configurations presented in this article. We use here the NL3
nuclear model, see Table C.1.

1557



C. Neutron Stars Physics and Astrophysics

9 11 13 15 17
R (km)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
/
M

u

Global Neutrality
Local Neutrality

Figure C.23.: Mass-Radius relation obtained with the traditional locally neu-
tral TOV treatment and with the new globally neutral equilibrium configura-
tions presented here. We use here the NL3 nuclear model, see Table C.1.
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C.5. The Role of Thomas-Fermi approach in

Neutron Star Matter

C.5.1. Introduction

We first recall how certainly one of the greatest success in human understand-
ing of the Universe has been the research activity started in 1054 by Chinese,
Korean and Japanese astronomers by the observations of a “Guest Star”(see
e.g. Shklovskii (1968)), followed by the discovery of the Pulsar NPO532 in
the Crab Nebula in 1967, (see e.g. Manchester and Taylor (1977)), still pre-
senting challenges in the yet not identified physical process originating the
expulsion of the remnant in the Supernova explosion (see e.g. Mezzacappa
(2005) and Fig. C.24(a)). We are currently exploring the neutron star equilib-
rium configuration for a missing process which may lead to the solution of
the above mentioned astrophysical puzzle.

We also recall an additional astrophysical observation which is currently
capturing the attention of Astrophysicists worldwide: the Gamma ray Bursts
or for short GRBs. Their discovery was accidental and triggered by a very un-
conventional idea proposed by Yacov Borisovich Zel’dovich. It is likely that
this idea served as an additional motivation for the United States of America
to put a set of four Vela Satellites into orbit, 150,000 miles above the Earth.
They were top-secret omnidirectional detectors using atomic clocks to pre-
cisely record the arrival times of both X-rays and γ-rays (see Fig. C.24(b)).
When they were made operational they immediately produced results ( see
Fig. C.24(b)). It was thought at first that the signals originated from nuclear
bomb explosions on the earth but they were much too frequent, one per day!
A systematic analysis showed that they had not originated on the earth, nor
even in the solar system. These Vela satellites had discovered GRBs! The first
public announcement of this came at the AAAS meeting in San Francisco in
a special session on neutron stars, black holes and binary X-ray sources, or-
ganized by Herb Gursky and myself (Gursky and Ruffini, 1975).

A few months later, Thibault Damour and myself published a theoretical
framework for GRBs based on the vacuum polarization process in the field of
a Kerr-Newman black hole (Damour and Ruffini, 1975). We showed how the
pair creation predicted by the Heisenberg-Euler-Schwinger theory Heisen-
berg and Euler (1936); Schwinger (1951, 1954a,b) would lead to a transfor-
mation of the black hole, asymptotically close to reversibility. The electron-
positron pairs created by this process were generated by what we now call
the blackholic energy. In that paper we concluded that this “naturally leads
to a very simple model for the explanation of the recently discovered GRBs”.
Our theory had two very clear signatures. It could only operate for black
holes with mass MBH in the range 3.2–106 M⊙ and the energy released had a
characteristic value of

1559



C. Neutron Stars Physics and Astrophysics

(a)

(b)

Figure C.24.: (a) The expanding shell of the remnant of the Crab Nebulae
as observed by the Hubble Space Telescope. Reproduced from Hubble Tele-
scope web site with their kind permission (News Release Number: STScl-
2005-37). (b) On the upper left the Vela 5A and 5B satellites and a typical
event as recorded by three of the Vela satellites; on the upper right the Comp-
ton satellite and the first evidence of the isotropy of distribution of GRB in
the sky; on the center left the Beppo Sax satellite and the discovery of the
after glow; on the center right a GRB from Integral satellite; in the lower part
the Socorro very large array radiotelescope ,the Hubble, the Chandra and
the XMM telescopes, as well as the VLT of Chile and KECK observatory in
Hawaii. All these instruments are operating for the observations of GRBs
(Ruffini et al., 2007a).
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E = 1.8 × 1054MBH/M⊙ ergs . (C.5.1)

Since nothing was then known about the location and the energetics of
these sources we stopped working in the field, waiting for a clarification of
the astrophysical scenario.

The situation changed drastically with the discovery of the “afterglow” of
GRBs (Costa et al., 1997) by the joint Italian-Dutch satellite BeppoSAX (see
Fig. C.24(b)). This X-ray emission lasted for months after the “prompt” emis-
sion of a few seconds duration and allowed the GRB sources to be identi-
fied much more accurately. This then led to the optical identification of the
GRBs by the largest telescopes in the world, including the Hubble Space Tele-
scope, the KECK telescope in Hawaii and the VLT in Chile (see Fig. C.24(b)).
Also, the very large array in Socorro made the radio identification of GRBs
possible. The optical identification of GRBs made the determination of their
distances possible. The first distance measurement for a GRB was made in
1997 for GRB970228 and the truly enormous of isotropical energy of this was
determined to be 1054 ergs per burst. This proved the existence of a single as-
trophysical system emitting as much energy during its short lifetime as that
emitted in the same time by all other stars of all galaxies in the Universe!a

It is interesting that this “quantum” of astrophysical energy coincided with
the one Thibault Damour and I had already predicted, see Eq. (C.5.1). Much
more has been learned on GRBs in recent years confirming this basic result (
see e.g. Ruffini (2008a)). The critical new important step now is to understand
the physical process leading to the critical fields needed for the pair creation
process during the gravitational collapse process from a Neutron Stars to a
Black Hole.

As third example, we recall the galactic ’X-ray bursters’ as well as some ob-
served X-ray emission precursor of supernovae events. It is our opinion that
the solution of: a) the problem of explaining the energetics of the emission of
the remnant during the collapse to a Neutron Star, b) the problem of forma-
tion of the supercritical fields during the collapse to a Black Hole, c) the less
energetics of galactic ’X-ray bursters’ and of the precursor of the supernovae
explosion event, will find their natural explanation from a yet unexplored
field: the electro-dynamical structure of a neutron star. We will outline a few
crucial ideas of how a Thomas-Fermi approach to a neutron star can indeed
represent an important step in identify this crucial new feature.

C.5.2. Thomas-Fermi model

We first recall the basic Thomas-Fermi non relativistic Equations (see e.g.
Landau and Lifshitz (1980)). They describe a degenerate Fermi gas of Nel

1Luminosity of average star = 1033 erg/s, Stars per galaxy = 1012, Number of galaxies
= 109. Finally, 33 + 12 + 9 = 54!
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electrons in the field of a point-like nucleus of charge Ze. The Coulomb po-
tential V(r) satisfies the Poisson equation

∇2V(r) = 4πen, (C.5.2)

where the electron number density n(r) is related to the Fermi momentum

pF by n = p3
F/(3π2h̄3). The equilibrium condition for an electron, of mass

m, inside the atom is expressed by
p2

F
2m − eV = EF. To put Eq. (C.5.2) in

dimensionless form, we introduce a function φ, related to Coulomb potential

by φ(r) = V(r) + EF
e = Ze χ(r)

r . Assuming r = bx, with b = (3π)3/2

27/3
1

Z1/3
h̄2

me2 , we
then have the universal equation (Thomas, 1927; Fermi, 1927)

d2χ(x)

dx2
=

χ(x)3/2

x1/2
. (C.5.3)

The first boundary condition for this equation follows from the request that
approaching the nucleus one gets the ordinary Coulomb potential therefore
χ(0) = 1. The second boundary condition comes from the fact that the num-

ber of electrons Nel is 1 − Nel
Z = χ(x0)− x0χ′(x0).

C.5.3. White dwarfs and Neutron Stars as Thomas-Fermi
systems

It was at the 1972 Les Houches organized by Bryce and Cecille de Witt sum-
mer School (see Fig. C.25(a) and Ruffini (1972)) that, generalizing a splendid
paper by Landau (1932), I introduced a Thomas-Fermi description of both
White Dwarfs and Neutron Stars within a Newtonian gravitational theory
and describing the microphysical quantities by a relativistic treatment. The
equilibrium condition for a self-gravitating system of fermions, in relativis-

tic regime is c
√

p2
F + m2

nc2 − mnc2 − mnV = −mnV0, where pF is the Fermi

momentum of a particle of mass mn, related to the particle density n by n =
1

3π2h̄3 p3
F. V(r) is the gravitational potential at a point at distance r from the

center of the configuration and V0 is the value of the potential at the bound-

ary Rc of the configuration V0 = GNmn
Rc

. N is the total number of particles.

The Poisson equation is ∇2V = −4πGmnn. Assuming V − V0 = GNmn
χ(r)

r

and r = bx, with b = (3π)2/3

27/3
1

N1/3

(

h̄
mnc

) (

mPlanck
mn

)2
we obtain the gravitational

Thomas-Fermi equation

d2χ

dx2
= −χ3/2

√
x

[

1 +

(

N

N∗

)4/3 χ

x

]3/2

, (C.5.4)
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where N∗ =
(

3π
4

)1/2
(

mPlanck
mn

)3
. Eq.(C.5.4) has to be integrated with the

boundary conditions χ(0) = 0, −xb

(

dχ
dx

)

x=xb

= 1. Eq. (C.5.4) can be ap-

plied as well to the case of white dwarfs.

It is sufficient to assume

b =
(3π)2/3

27/3

1

N1/3

(

h̄

mec

)(

mPlanck

µmn

)2

,

N∗ =
(

3π

4

)1/2 (mPlanck

µmn

)3

,

M =
∫ Rc

0
4πr2ne(r)µmndr.

For the equilibrium condition c
√

p2
F + m2c2 − mc2 − µmnV = −µmnV0, in

order to obtain for the critical mass the value Mcrit ≈ 5.7Msunµ−2
e ≈ 1.5Msun.

C.5.4. The relativistic Thomas-Fermi equation

In the intervening years my attention was dedicated to an apparently aca-
demic problem: the solution of a relativistic Thomas-Fermi Equation and ex-
trapolating the Thomas-Fermi solution to large atomic numbers of Z ≈ 104 −
106. Three new features were outlined: a) the necessity of introducing a phys-
ical size for the nucleus, b) the penetration of the electrons in the nucleus, c)
the definition of an effective nuclear charge (Ferreirinho et al., 1980; Ruffini
and Stella, 1981). The electrostatic potential is given by ∇2V(r) = 4πen,
where the number density of electrons is related to the Fermi momentum pF

by n =
p3

F

3π2 h̄3 . In order to have equilibrium we have c
√

p2
F + m2c2 − mc2 −

eV(r) = EF. Assuming φ(r) = V(r) + EF
e = Ze χ(r)

r , Zc =
(

3π
4

)1/2
(

h̄c
e2

)3/2
,

and r = bx, with b = (3π)3/2

27/3
1

Z1/3
h̄2

me2 , the Eq. (C.5.3) becomes

d2χ(x)

dx2
=

χ(x)3/2

x1/2

[

1 +

(

Z

Zc

)4/3 χ(x)

x

]3/2

. (C.5.5)

C.5.5. The essential role of the non point-like nucleus

The point-like assumption for the nucleus leads, in the relativistic case, to
a non-integrable expression for the electron density near the origin. We as-
sumed a uniformly charged nucleus with a radius rnuc and a mass number A
given by the following semi-empirical formulae
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(a)

(b)

Figure C.25.: (a) Lunch at Les Louces summer school on ’Black Holes’. In
front, face to face, Igor Novikov and the author; in the right the title of the
book in English and in French. It is interesting that in that occasion Cecile de
Witt founded the French translation of the word ’Back Hole’ in ’Trou Noir’
objectionable and she introduced instead the even more objectionable term
’Astres Occlus’. The French neverthless happily adopted in the following
years the literally translated word ’Trou Noir’ for the astrophysical concept
I introduced in 1971 with J.A. Wheeler (Ruffini and Wheeler, 1971). (b) The
number of electrons contained within a distance x of the origin, as a function
of the total number Z for a neutral atom. The lowest curve is that given by
the solution of the non-relativistic Thomas-Fermi equation.
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rnuc = r0A1/3, r0 ≈ 1.5 × 10−13cm, (C.5.6)

Z ≃
[

2

A
+

3

200

1

A1/3

]−1

, (C.5.7)

Eq.(C.5.5) then becomes

d2χ(x)

dx2
=

χ(x)3/2

x1/2

[

1 +

(

Z

Zc

)4/3 χ(x)

x

]3/2

− 3x

x3
nuc

θ(xnuc − x), (C.5.8)

where θ = 1 for r < rnuc, θ = 0 for r > rnuc, χ(0) = 0, χ(∞) = 0.
Eq.(C.5.8) has been integrated numerically for selected values of Z (see

Fig. C.25(b) and Ferreirinho et al. (1980); Ruffini and Stella (1981)). Similar
results had been obtained by Greiner and his school and by Popov and his
school with special emphasis on the existence of critical electric field at the
surface of heavy nuclei. Their work was mainly interested in the study of the
possibility of having process of vacuum polarization at the surface of heavy
nuclei to be possibly achieved by heavy nuclei collisions. Paradoxically at
the time we were not interested in this very important aspect and we did
not compute the strength of the field in our relativistic Thomas-Fermi model
which is indeed of the order of the Critical Field Ec = m2c3/eh̄ .

C.5.6. Nuclear matter in bulk: A ≈ 300 or A ≈ (mPlanck/mn)3

The situation clearly changed with the discovery of GRBs and the under-
standing that the process of vacuum polarization unsuccessfully sought in
earthbound experiments could indeed be observed in the process of forma-
tion of a Black Hole from the gravitational collapse of a neutron star. The
concept of a Dyadosphere, Ruffini (1998); Preparata et al. (1998), was intro-
duced around an already formed Black Hole and it became clear that this con-
cept was of paramount importance in the understanding the energy source
for GRBs. It soon became clear that the initial conditions for such a process
had to be found in the electro-dynamical properties of neutron stars. Sim-
ilarly manifest came the crucial factor which had hampered the analysis of
the true electro dynamical properties of a neutron star; the unjustified impo-
sition of local charge neutrality as opposed to the global charge neutrality of
the system. We have therefore proceeded to make a model of a nuclear matter
core of A ≈ (mPlanck/mn)3 nucleons (Ruffini et al., 2007c). We generalized to
this more general case the concept introduced in their important work by W.
Greiner and V. Popov ( see Fig. C.26 ) as follows.

I have assumed that the proton number density is constant inside the core
r ≤ Rc and vanishes outside the core r > Rc:
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Figure C.26.: Vladimir Popov discussing with the author and Professors She
Sheng Xue and Gregory Vereshchagin (Roma 2007). Also quoted the classical
contributions of Popov and his school.

np =
1

3π2h̄3
(PF

p )
3 =

3Np

4πR3
c

θ(Rc − r), Rc = ∆
h̄

mπc
N1/3

p ,

where PF
p is the Fermi momentum of protons, θ(Rc − r) is the step-function

and ∆ is a parameter. The proton Fermi energy is

Ep(P
F
p ) = [(PF

p c)2 + m2
pc4]1/2 − mpc2 + eV, (C.5.9)

where e is the proton charge and V is the Coulomb potential. Based on the
Gauss law, V(r) obeys the Poisson equation ∇2V(r) = −4πe

[

np(r)− ne(r)
]

and boundary conditions V(∞) = 0, V(0) = f inite, where the electron
number density ne(r) is given by

ne(r) =
1

3π2h̄3
(PF

e )
3, (C.5.10)

being PF
e the electron Fermi momentum. The electron Fermi energy is

Ee(P
F
e ) = [(PF

e c)2 + m2c4]1/2 − mc2 − eV. (C.5.11)

The energetic equation for an electrodynamic equilibrium of electrons in
the Coulomb potential V(r) is Ee(PF

e ) = 0, hence the Fermi momentum and
the electron number density can be written as
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ne(r) =
1

3π2h̄3c3

[

e2V2(r) + 2mc2eV(r)
]3/2

.

Introducing the new variable x = r/(h̄/mπc) ( the radial coordinate in
unit of pion Compton length (h̄/mπc), xc = x(r = Rc)), I have obtained the
following relativistic Thomas-Fermi Equation (Patricelli et al., 2008):

1

3x

d2χ(x)

dx2
= −α

{

1

∆3
θ(xc − x)− 4

9π

[

χ2(x)

x2
+ 2

m

mπ

χ

x

]3/2
}

, (C.5.12)

where χ is a dimensionless function defined by χ
r = eV

ch̄ and α is the fine

structure constant α = e2/(h̄c). The boundary conditions of the function
χ(x) are χ(0) = 0 , χ(∞) = 0 and Ne =

∫ ∞

0 4πr2drne(r). Instead of using
the phenomenological relation between Z and A, given by Eqs. (C.5.6) and
(C.5.7), we determine directly the relation between A and Z by requiring the
β-equilibrium

En = Ep + Ee. (C.5.13)

The number-density of degenerate neutrons is given by nn(r) =
1

3π2h̄3 (P
F
n )

3,

where PF
n is the Fermi momentum of neutrons. The Fermi energy of degener-

ate neutrons is

En(P
F
n ) = [(PF

n c)2 + m2
nc4]1/2 − mnc2, (C.5.14)

where mn is the neutron mass. Substituting Eqs. (C.5.9, C.5.11, C.5.14) into
Eq. (C.5.13), we obtain [(PF

n c)2 + m2
nc4]1/2 − mnc2 = [(PF

p c)2 + m2
pc4]1/2 −

mpc2 + eV. These equations and boundary conditions form a close set of non-
linear boundary value problem for a unique solution for Coulomb potential
V(r) and electron distribution (C.5.10), as functions of the parameter ∆, i.e.,
the proton number-density np. The solution is given in Fig. C.27(a). A rele-
vant quantity for exploring the physical significance of the solution is given
by the number of electrons within a given radius r, Ne(r) =

∫ r
0 4π(r′)2ne(r′)dr′.

This allows to determine, for selected values of the A = Np + Nn parameter,
the distribution of the electrons within and outside the core and follow the
progressive penetration of the electrons in the core at increasing values of A
( see Fig. C.27(b)). We can then evaluate, generalizing the results in Ferreir-
inho et al. (1980); Ruffini and Stella (1981) , the net charge inside the core
Nnet = Np − Ne(Rc) < Np, and consequently determine of the electric field
at the core surface, as well as within and outside the core.
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Figure C.27.: (a) The solution χ of the relativistic Thomas-Fermi Equation
for A = 1057 and core radius Rc = 10km, is plotted as a function of radial
coordinate. The left solid line corresponds to the internal solution and it is
plotted as a function of radial coordinate in unit of Rc in logarithmic scale.
The right dotted line corresponds to the solution external to the core and it is
plotted as function of the distance ∆r from the surface in the logarithmic scale
in centimeter. (b) The electron number in the unit of the total proton number
Np, for selected values of A, is given as function of radial distance in the unit
of the core radius Rc, again in logarithmic scale. It is clear how by increasing
the value of A the penetration of electrons inside the core increases.

1568



C.5. The Role of Thomas-Fermi approach in Neutron Star Matter

0

0.2

0.4

0.6

0.8

1

1101001000

E
le

ct
ric

 fi
el

d 
(u

ni
ts

 o
f E

c)

Depth inside the core surface (units of λc)

1 10 100

Distance outside the core surface (units of λc)

Figure C.28.: The electric field in the unit of the critical field Ec is plotted
around the core radius Rc. The left (right) solid (dotted) diagram refers to
the region just inside (outside) the core radius plotted logarithmically. By
increasing the density of the star the field approaches the critical field.

C.5.7. The energetically favorable configurations

Introducing the new function φ defined by φ = ∆
[

4
9π

]1/3
χ
x , and putting x̂ =

∆−1
√

α (12/π)1/6 x, ξ = x̂ − x̂c the ultra-relativistic Thomas-Fermi equation
can be written as

d2φ̂(ξ)

dξ2
= −θ(−ξ) + φ̂(ξ)3 , (C.5.15)

where φ̂(ξ) = φ(ξ + x̂c). The boundary conditions on φ̂ are: φ̂(ξ) → 1 as
ξ → −x̂c ≪ 0 (at massive core center) and φ̂(ξ) → 0 as ξ → ∞. We must also
have the continuity of the function φ̂ and the continuity of its first derivative
φ̂′ at the surface of massive core ξ = 0 .
Eq. (C.5.15) admits an exact solution

φ̂(ξ) =







1 − 3
[

1 + 2−1/2 sinh(a −
√

3ξ)
]−1

, ξ < 0,
√

2
(ξ+b)

, ξ > 0,
(C.5.16)

where integration constants a and b are: sinh a = 11
√

2, a = 3.439; b =

(4/3)
√

2.
We than have for the Coulomb potential energy, in terms of the variable ξ,

eV(ξ) =
(

1
∆3

9π
4

)1/3
mπc2φ̂(ξ), and at the center of massive core eV(0) =

h̄c(3π2np)1/3 =
(

1
∆3

9π
4

)1/3
mπc2, which plays a fundamental role in order to
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determine the stability of the configuration.
It is possible to compare energetic properties of different configurations sat-
isfying the different neutrality conditions ne = np and Ne = Np, with the
same core radius Rc and total nucleon number A. The total energy in the case
ne = np is

E
loc
tot = ∑

i=e,p,n

E
i
loc,

E
i
loc = 2

∫

d3rd3p

(2πh̄)3
ǫi

loc(p) =

cVc

8π2h̄3

{

P̄F
i [2(P̄

F
i )

2 + (mic)
2][(P̄F

i )
2 + (mic)

2]1/2 − (mic)
4Arsh

(

P̄F
i

mic

)}

The total energy in the case Ne = Np is

E
glob
tot = Eelec + Ebinding + ∑

i=e,p,n

E
i
glob

Eelec =
∫

E2

8π
d3r ≈ 33/2π1/2

4

N2/3
p√
α∆c

mπ

∫ +∞

−κRc

dx
[

φ′(x)
]2

Ebinding = −2
∫

d3rd3 p

(2πh̄)3
eV(r) ≈ − Vc

3π2h̄3
(PF

e )
3eV(0)

E
i
glob = 2

∫

d3rd3p

(2πh̄)3
ǫi

glob(p) =

cVc

8π2h̄3

{

PF
i [2(P

F
i )

2 + (mic)
2][(PF

i )
2 + (mic)

2]1/2 − (mic)
4Arsh

(

PF
i

mic

)}

.

We have indicated with P̄F
i (i = n, e, p) the Fermi momentum in the case

of local charge neutrality (V = 0) and with PF
i ( i = n, e, p) the Fermi mo-

mentum in the case of global charge neutrality (V 6= 0). The energetic differ-
ence between local neutrality and global neutrality configurations is positive,

∆E = E
loc
tot −E

glob
tot > 0, so configurations which obey to the condition of global

charge neutrality are energetically favorable with respect to one which obey
to the condition of local charge neutrality. For a core of 10 Km the difference
in binding energy reaches 1049 ergs which gives an upper limit to the energy
emittable by a neutron star, reaching its electrodynamical ground state.
The current work is three fold: a) generalize our results considering the heavy
nuclei as special limiting cases of macroscopic nuclear matter cores (Patricelli
et al., 2008), b) describe a macroscopic nuclear matter core within the realm
of General Relativity fulfilling the generalized Tolman, Oppenheimer, Volkoff
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equation, c) Generalize the concept of a Dyadosphere to a Kerr-Newman Ge-
ometry.

C.5.8. Conclusions

It is clear that any neutron star has two very different components: the core
with pressure dominated by a baryonic component and the outer crust with
pressure dominated by a leptonic component and density dominated by the
nuclear species. The considerations that we have presented above apply to
the first component where the baryonic pressure dominates. It is clear that
when the density increases and baryons become ultra-relativistic is this bary-
onic component which undergoes the process of gravitational collapse and
its dynamics is completely dominated by the electrodynamical process which
we have presented in this talk.
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C.6. A Self-consistent Approach to Neutron Stars

C.6.1. Introduction

Since the seminal work of Oppenheimer and Volkoff (1939) on the general rel-
ativistic equilibrium state of a degenerate gas of neutrons, a colossal amount
of research has been devoted to neutron star physics. In scientific literature on
neutron stars, a “local approach”, where the equation of state of neutron star
matter is constructed ignoring global gravitational and Coulombian effects
by assuming not only flat space but also local charge neutrality, has been tra-
ditionally used. A barotropic relation P = P(E) between the energy-density
E and the pressure P is then obtained (see e.g. Haensel et al. (2007) for a recent
compilation of modern neutron star matter equations of state). The gravita-
tional effects are then taken into account by embedding such an equation of
state into the so-called Tolman-Oppenheimer-Volkoff equation of hydrostatic
equilibrium in spherical symmetry (we use units with h̄ = c = 1 hereafter):

P′ = − (E+ P)(4πGr3P + GM)

r(r − 2GM)
, (C.6.1)

where the mass M(r) is given by

M′ = 4πr2
E , (C.6.2)

we denote radial derivatives with primes, and G = 1/m2
Pl with mPl being

the Planck mass. Thus, in the local approach, the problem of the equilibrium
state of a self-gravitating system composed of different degenerate fermion-
species is reduced to an effective one-component fluid problem by solving
the system of equations, given by Eqs. (C.6.1) and (C.6.2), for a barotropic
equation of state P(E).

We should consider such an approach as an effective solution of the prob-
lem that gives good estimates for the mass and the radius of a neutron star
through an oversimplification of the real physical situation. However, recent
developments in high-energy astrophysics point to the relevance of overcrit-
ical electric fields in neutron stars and black holes (Ruffini et al., 2010b). It
has then become apparent that a new approach to neutron stars is necessary
and that fundamental gravito-electrodynamical effects are missing in the tra-
ditional approach.

We present here the self-consistent equilibrium equations governing a de-
generate neutron, proton and electron fluid in beta equilibrium within the
framework of relativistic quantum statistics and of the Einstein-Maxwell equa-
tions. From this formulation descend the general relativistic Thomas-Fermi
equation, which, as in the case of atoms, plays a crucial role by joining Coulom-
bian, gravitational and quantum-statistical effects associated with the equilib-
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rium state of a self-gravitating system of degenerate fermions.

C.6.2. The Equilibrium Equations

We consider the equilibrium configurations of a degenerate gas of neutrons,
protons and electrons with total matter energy density and pressure

E = ∑
i=n,p,e

Ei , P = ∑
i=n,p,e

Pi , (C.6.3)

that satisfy the condition of beta equilibrium

µn = µp + µe , (C.6.4)

where µi = ∂E/∂ni denotes the free chemical potential of the particle species
with number density ni. In addition, we introduce the extension to gen-
eral relativity of the Thomas-Fermi equilibrium condition on the generalized
Fermi energy EF

e of the electron component:

EF
e = eν/2µe − me − eV = constant , (C.6.5)

where e is the fundamental charge, V is the Coulomb potential of the config-
uration and we have introduced the metric

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2 , (C.6.6)

for a spherically-symmetric non-rotating neutron star. The metric function λ

is related to the mass M(r) and the electric field E(r) = −e−(ν+λ)/2V ′ through

e−λ = 1 − 2GM(r)

r
+ Gr2E2(r) . (C.6.7)

Thus, the equations for the neutron star equilibrium configuration consist of
the following Einstein-Maxwell equations and general relativistic Thomas-

1573



C. Neutron Stars Physics and Astrophysics

Fermi equation:

M′ = 4πr2
E− 4πr3e−ν/2V̂ ′(np − ne), (C.6.8)

ν′

r
+

1 − eλ

r2
= 8πG eλ

[

P − e−(ν+λ)

8πα
(V̂ ′)2

]

, (C.6.9)

P′ +
ν′

2
(E+ P) = −(Pem)′ − 4Pem

r
, (C.6.10)

V̂ ′′ + V̂ ′
[

2

r
− (ν′ + λ′)

2

]

= −4πα eν/2eλ
{

np

− e−3ν/2

3π2
[(V̂ + me)

2 − m2
e eν]3/2

}

,(C.6.11)

where α denotes the fine structure constant, V̂ = EF
e + eV and Pem = −E2/(8π).

The assumption of the equilibrium condition in Eq. (C.6.5), together with
the beta equilibrium condition in Eq. (C.6.4) and the hydrostatic equilibrium
in Eq. (C.6.10), along with the thermodynamic relation Ei + Pi = niµi, can
be demonstrated to be enough to guarantee the constancy of the generalized
Fermi energy

EF
i = eν/2µi − mi + qiV , i = n, p, e , (C.6.12)

for all particle species separately. Here, qi denotes the particle unit charge
of the i-species. Indeed, as shown by Olson and Bailyn (1975), when the
fermion nature of the constituents and their degeneracy are taken into ac-
count, in the configuration of minimum energy, the generalized Fermi ener-
gies EF

i defined by Eq. (C.6.12) must be constant over the entire configura-
tion, i.e. r-independent. These minimum energy conditions generalize the
equilibrium conditions of Klein (1949) and of Kodama and Yamada (1972)
to the case of degenerate multicomponent fluids with particle species with
non-zero unit charge. Therefore, the solution to the system of equations com-
posed by Eq. (C.6.4), by Eq. (C.6.5), and by Eqs. (C.6.8)–(C.6.11) represents
the ground-state equilibrium configuration.

C.6.3. Some Specific Solutions

The inconsistency of the local charge neutrality condition ne(r) = np(r) with
this system of equations was proven in Rotondo et al. (2011d), where, in ad-
dition, a globally neutral solution was obtained by solving the above self-
consistent equations in the case of non-strongly interacting degenerate neu-
trons, protons and electrons extending from the center of the star all the way
to the border. Although the configuration described in Rotondo et al. (2011d)
cannot represent a realistic neutron star, the gravito-electrodynamical effects
discovered there deserve further attention.

In a realistic neuron star, the degenerate neutron, proton and electron fluid
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is confined to the core and is subjected to the external pressure of the crust
formed around by white-dwarf-like material. In this more general case, the
constancy of the generalized Fermi energy of the electrons still plays a funda-
mental role in order to fulfill the matching conditions and in the boundary-
value problem (Belvedere et al., 2011). It can be shown that as a conse-
quence of the fulfillment of the core-crust matching conditions and the self-
consistent minimum energy equilibrium equations described here, the sur-
face of the core develops a sharp exponential transition surrounded by the
neutron star’s crust (Belvedere et al., 2011). Furthermore, together with such
an exponential density transition, an electric field with an intensity larger
than that of the critical field for vacuum polarization,

Ec =
m2

e√
α

, (C.6.13)

extending over all the entire surface of the transition surface, whose thickness
is of the order of several electron Compton wavelength λe = 1/me, appears.

C.6.4. Conclusions

We have presented the coupled system of equations that must be solved in or-
der to calculate the ground-state equilibrium configuration of a neutron star.
In addition, we have shown that the minimum energy configuration exhibits
an r-independent generalized particle Fermi energy for all particle species
composing the internal fluid. We have also demonstrated that the minimum
energy problem of neutron stars can be reformulated as an extension to gen-
eral relativity of the Thomas-Fermi atom.

The contribution of the hadronic fields to the energy-momentum tensor,
to the four-vector current and, consequently, to the Einstein-Maxwell equa-
tions are currently under consideration in order to establish a more general
formulation of the problem (Rueda et al., 2011). The introduction of strong
interactions preserves the r-independence of the generalized Fermi energy
of the electrons, requires the fulfillment of the general relativistic Thomas-
Fermi equation, and confirms all the gravito-electrodynamical effects here
described in the simplest possible example (Rueda et al., 2011).
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C.7. On the electrostatic structure of neutron stars

C.7.1. Introduction

From the point of view of Newtonian gravity, an spherically symmetric ob-
ject composed by a free degenerate gas of neutrons has a maximum mass
about Mmax ≃ 5.8M⊙ (Landau and Lifshitz, 1980). Nevertheless, the strong
gravity expected in neutron star interiors imposes the use of general relativity
equations as structure equations. For the same free gas of neutrons, Einstein
theory strongly reduces the maximum mass limit to Mmax ≃ 0.7M⊙ as calcu-
lated by Oppenheimer & Volkoff (OV) in their seminal paper (Oppenheimer
and Volkoff, 1939).

Observations of X-Ray Binary systems ruled out rapidly the OV work find-
ing that usually neutron stars have masses MNS & 1.4M⊙. Even very re-
cently an extraordinary high value of M = 2.74 ± 0.21M⊙ has been reported
for the millisecond pulsar PSR J1748-2021B (Freire et al., 2008). Therefore, re-
searchers directed their attention to the theoretical study of the properties of
neutron stars. In particular, the improvement of the Equation of State (EoS)
for nuclear matter at densities above the so–called saturation density of ordi-
nary nuclei ρ0 ≃ 2.7× 1014 g cm−3, has been one of the challenges of theoret-
ical physics in the last 40 years.

Despite the effort to understand the nuclear EoS above saturation density
ρ0, the problem is by far unsolved, due mainly to the lack of a theory for the
strong interaction, and to the lack of ground–based experiments able to simu-
late the extreme conditions expected in neutron star interiors. Consequently,
a proliferation of nuclear EoS approaching in different ways the strong in-
teraction is growing day after day. Thus, to avoid any discussion of validity
of the EoS we use, we will construct here a simple phenomenological EoS
based on the Weizsacker mass formula in nuclear physics, which let us to
concentrate the attention to the real scope of the paper, which is devoted to
the self–consistent introduction of the electromagnetic interaction inside the
equilibrium equations governing neutron stars.

The standard picture of a neutron star assumes at least the existence of
three regions: core, inner crust and outer crust. Starting for the more exter-
nal one, the outer crust is composed by a nuclei lattice (or Coulomb lattice)
immersed in sea of free electrons, and extents until a density ρd ≃ 4 × 1011

g cm−3 or neutron drip density. At this density, the dripped neutrons start
to form a background of neutrons. This region composed by a nuclei lattice
in a background of electrons and neutrons is known as inner crust and exists
approximately until the nuclear saturation density ρ0 ≃ 2.7× 1014 g cm−3. At
even higher densities, the core of the star is assumed to be a uniform gas com-
posed mainly by neutrons, and a smaller presence of protons and electrons
under the constraints of β-equilibrium and local charge neutrality ne = np.
Here ne and np stand for the electron and proton number densities. There-
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fore, in the interior of a neutron star conjugate all the interactions we know
in nature, namely, weak, strong, electromagnetic and gravitational. Never-
theless, as we have mentioned, the electromagnetic interaction is not taken
into account because the very stringent assumption of local charge neutrality
condition ne = np is assumed. In this paper we will relax this condition and
impose the more general one Ne = Np where Ne, Np are the total number of
electrons and protons respectively.

As a natural consequence of global neutrality it appears a transition surface–
shell between the core and the crust. The thickness δR of this surface–shell
is of order of the electron Compton wavelength λe = 1/me (we use here-
after h̄ = c = 1), i.e., of the order of some fermi. Inside the surface–shell a
strong electric field develops. It grows until some maximum value and after
drops down up to some distance δR from the core radius Rc where it becomes
null and the configuration becomes neutral. Therefore, the thickness of the
surface–shell δR is given by the global neutrality condition

ϕ(Rc + δR) = 0 , ϕ′(Rc + δR) = 0 , (C.7.1)

where ϕ is the electrostatic potential.

C.7.2. Structure Equations

The metric for a spherically symmetric spacetime can be written as

ds2 = eνdt2 − eλdr2 − r2dθ2 − r2 sin2 dφ2 , (C.7.2)

where ν and λ are functions of r only. For this metric the Einstein-Maxwell
field equations are

M′ = 4πr2(T0
0 − Eem) + 4πeλ/2r3eE(np − ne) (C.7.3)

e−λ

(

ν′

r
+

1

r2

)

− 1

r2
= −8πGT1

1 (C.7.4)

e−λ

[

ν′′ + (ν′ − λ′)
(

ν′

2
+

1

r

)]

= −16πGT2
2 (C.7.5)

(eϕ)′′ + (eϕ)′
[

2

r
− (ν′ + λ′)

2

]

= −4παeν/2eλ(np − ne) , (C.7.6)

where T
µ
ν is the energy-momentum tensor of matter and fields, E is the elec-

trostatic field and Eem = E2/2 is the electromagnetic energy density.
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C.7.3. The Equation of State

Core EoS

In phenomenological nuclear physics, the Weizsacker binding energy per nu-
cleon is given by

EW

A
= −av + as

(N − Z)2

A2
+ aC

Z2

A4/3
+ asurfA

−1/3 +
δeven−odd

A
, (C.7.7)

where av = 15.8 MeV, asurf = 18.3 MeV, as = 23.3 MeV, aC = 0.714 MeV,
δeven−odd ≃ 12 MeV, are the volume, surface, symmetry, Coulomb, and pair-
ing contributions.

If we assume the above formula valid also in the case of neutron rich matter
N >> Z we have

EW

A
≃ −av + as > 0 , (C.7.8)

which implies that neutron rich matter is unbounded. However, for a large
number of baryons A, the gravitational potential plays an important role. In
order to see that, let us to modify the Weizsacker formula by including the
gravitational interaction ( in the constant density case)

EW

A
≃ −av + as −

3

5r0

(

mn

mPlanck

)2

A2/3 , (C.7.9)

where we have assumed

M ≃ mnA , R ≃ r0A1/3 , mn ≃ 939 MeV . (C.7.10)

Then neutron matter is bounded for

A > A∗ =
[

5r0

3
(−av + as)

]3/2 (mPlanck

mn

)3

≃ 0.8 × 1056 . (C.7.11)

Using this minimum mass number A∗ for bounding we calculate the mini-
mum mass as given by the modified Weizsacker formula (C.7.9)

MW & mn A∗ ≃ 0.07M⊙ , (C.7.12)

which is very close to the value given by most accepted nuclear EoS.

Therefore the nuclear potential energy should properly be included into the
mass–energy of neutron star cores. Applying the Weizsacker formula (C.7.7)
to a local thin–shell of neutron star cores, we write the energy density for the
core in the form

E = Ek + EW + Eem (C.7.13)
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where

Ek =
2

(2π)3 ∑
i=e,p,n

∫ kF
i

0
4πk2

√

k2 + m2
i dk , (C.7.14)

EW = −a∗v n + a∗s n T2 + asurf n2/3 δ(r − Rc) , (C.7.15)

where

T ≡ nn − np

n
, n ≡ np + nn , (C.7.16)

are the asymmetry parameter and the baryon number density. The param-
eters a∗v and a∗s must be calculated avoiding double counting of the kinetic
contribution to the volume and symmetry energy. For the surface contribu-
tion we have introduced a δ-distribution about the core radius Rc to recall
that it acts just on the surface of the core. The radius of the core is defined
as the radius at which the rest-mass density of the core reach nuclear density,
namely, ρ(Rc) = ρ0 ≃ 2.7 × 1014 g cm−3. The delta distribution has dimen-
sion L−1, and it is given by the characteristic range of the strong interaction,
so it should be of the order of some fermi.

To obtain the parameters a∗v and a∗s , we expand the kinetic energy (C.7.13)
about nn = np (T = 0), i.e. for symmetric nuclear matter

Ek

n
− m = ãv + ãsT2 + ... , (C.7.17)

ãv ≃ 21.84 MeV , ãs =
kF

0

6
√

(kF
0 )

2 + m2
≃ 11.84 MeV , (C.7.18)

where we have assumed mp ≃ mn ≃ m = 939 MeV, and

kF
p = kF

n = kF
0 =

(

3π2n0

2

)1/3

≃ 263.26 MeV, (C.7.19)

where n0 ≃ 0.16 fm−3. Then we obtain

a∗v = av − ãv ≃ 37.64 MeV , (C.7.20)

a∗as = as − ãs ≃ 11.45 MeV . (C.7.21)

Therefore, the relevant components of the energy-momentum tensor in the
core are

T0
0 = Ek + Eem + EW , (C.7.22)

T1
1 = −Pk + Eem − PW , (C.7.23)

T2
2 = −Pk − Eem − PW . (C.7.24)
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The pressure terms are calculated by thermodynamical self–consistency as

Pi = n2 ∂Ei/n

∂n
. (C.7.25)

where i = k, em, W respectively indicates kinetic, electromagnetic and nu-
clear components. In addition, we calculate chemical potentials of neutrons,
protons and electrons by using usual definition

µn,p,e =
∂E

∂nn,p,e
. (C.7.26)

The system must satisfy some additional constraints. The first one is related
with the equilibrium of the electron gas which can be written as

EF
e = eν/2µe − eϕ = constant > 0 , (C.7.27)

while the second one is the β-equilibrium of the system given by

EF
n = EF

e + EF
p , (C.7.28)

where
EF

p = eν/2µp + eϕ . (C.7.29)

Using the above constraints, we can write the electron and neutron number
densities as

ne =
[e−ν/2(EF

e + eϕ)]3

3π2
(C.7.30)

nn =
(e−ν/2)3

3π2
{(EF

e + EF
p + mn)

2 − m2
neν}3/2 , (C.7.31)

where we have used the ultra-relativistic approximation for the electrons
µe ≃ PF

e , with PF
e the electron Fermi momentum.

Crust EoS

For the inner crust we adopt the well-known EoS by Baym, Bethe and Pethick
(BBP) (Baym et al., 1971a), which is well fitted by the following polytropic–
like form

P = K E
Γ , K = 0.000287961 , Γ = 1.68051 , (C.7.32)

where P and E are the total pressure and energy density. Of course for each
value of pressure (and density) we need the self–consistent values of the
chemical potential of neutrons and electrons, which can be obtained from
the entries on the tables in Baym et al. (1971a).

In the outer crust we have white-dwarf-like material, so we can obtain most
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of its properties from the equilibrium condition (Landau and Lifshitz, 1980)

eν/2(µe + 2mn) = constant = eν(R)/2(me + 2mn) , (C.7.33)

where R is the radius of the configuration, which is calculated as the point
where P(R) = 0. From the matching conditions with the exterior spacetime,
which must be the Schwarzschild solution we obtain

eν(R)/2 =

√

1 − 2M(R)

R
. (C.7.34)

C.7.4. Numerical Integration

We describe now the main steps to construct the solutions:

1. Select a value for the central rest-mass density

ρ(0) = ∑
i=e,p,n

mini(0) . (C.7.35)

2. Select a positive value for EF
e . It determines the electron chemical po-

tential at the edge of the crust

µcrust
e = µe(Rc + δR) = e−ν(Rc)/2EF

e , (C.7.36)

where we have used the global neutrality condition and the fact that at
very small scales the gravitational potential is constant, which is exactly
the case for the region Rc ≤ r ≤ Rc + δR, for δR << Rc.

3. From the regular behavior at the center r = 0 we have ne(0) = np(0).

4. From 1–3 and the β-equilibrium condition (C.7.28) we obtain the central
particle chemical potential µe(0), µp(0), and µn(0).

5. Select a value for the central electrostatic potential ϕ(0).

6. Now we can calculate the central gravitational potential using (C.7.27)
by

eν(0)/2 =
EF

e + eϕ(0)

µe(0)
. (C.7.37)

7. Having all the initial conditions determined, it is possible to integrate
the equations in the core up to the a radius Rc defined by ρ(Rc) = ρ0,
i.e., until the surface of the core.

8. The next step is to calculate the properties of the transition surface-shell
between the core and the crust. Due to the surface tension neutron and
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proton profiles will drop down. In this work the value of the surface
tension is taken to be the one given by the Weizsacker formula (C.7.15).
We calculate properly the electric field coming out from the surface
charge separation between electrons and protons. The transition sur-
face finishes when we reach global charge neutrality.

9. Finally we integrate the crust equations until reach at the radius of the
configuration P(R) = 0. At the end of the integration we verify the
matching condition with the Schwarzschild solution given by (C.7.34).
If it is not satisfied we change the central gravitational potential value
by changing the central potential as dictated by (C.7.37). In other words,
the correct value of the central electrostatic potential is the one for which
we satisfy correctly all the boundary conditions of the system.

Below we show an example of the integration for the initial conditions
ρ(0) ≃ 5.7ρ0 and P(0) ≃ 40.63 MeV/fm3. In Fig. C.29 we have plotted the
mass function in the core of the star in solar masses, while in Fig. C.30 we
show the electrostatic field in the core in unit of the critical electric field for
vacuum polarization Ec = m2

e c3/eh̄ ∼ 1016 V/cm. Fig. C.31 shows the elec-
trostatic potential energy of protons in the core in units of the pion mass and
in Fig. C.32 we show the number density of neutrons, protons, and electrons
normalized to the nuclear number density n0 in the core. In Fig. C.33 it is
shown the internal pressure in the core. In Figs. C.34 and C.35 we show the
electrostatic field and proton Coulomb energy in the transition surface-shell
between the core and the crust, while in Figs. C.36 and C.37 we have plotted
the number density of particles and internal pressure in the surface-shell.

1582



C.7. On the electrostatic structure of neutron stars

0 1 2 3 4 5 6 7
r HkmL

0

0.1

0.2

0.3

0.4

M
������������
M�

Figure C.29.: Mass of the core in solar masses.
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Figure C.30.: Electric field of the core in units of the critical field
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Figure C.31.: Electrostatic potential of the core in units of the pion mass.
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Figure C.32.: Number densities inside the core in units of the nuclear density
n0.
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Figure C.33.: Pressure inside the core.
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Figure C.34.: Surface electric field in units of the critical field.
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Figure C.35.: Surface electrostatic potential of the core in units of the pion
mass.
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Figure C.36.: Surface number densities in units of the nuclear density n0.
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Figure C.37.: Surface pressure
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C.8. A New Family of Neutron Star Models:

Global Neutrality vs. Local Neutrality

C.8.1. Introduction

Traditionally, neutron star equilibrium configurations have been constructed
following a “local approach”. In such an approach, the equation of state of
neutron star matter is constructed ignoring global gravitational and Coulomb
effects by assuming flat spacetime as well as local charge neutrality. Then, it
is obtained a relation P = P(E) between the energy-density E and the pres-
sure P (see Haensel et al. (2007) for a recent compilation of modern neutron
star matter equations of state). The gravitational effects are then taken into
account by embedding such an equation of state into the so-called Tolman-
Oppenheimer-Volkoff equation of hydrostatic equilibrium in spherical sym-
metry

dP(r)

dr
= −G[E(r) + P(r)][4πr3P(r)/c2 + M(r)]

c2r(r − 2GM(r)/c2)
, (C.8.1)

where the mass M(r) is obtained from dM(r)/dr = 4πr2E(r)/c2. Thus, in
the local approach, the problem of the equilibrium state of a self-gravitating
system composed of different particle-species is reduced to an effective one-
component fluid problem by solving the above equations for a certain equa-
tion of state P(E).

This approach, although gives good estimates for the mass and the radius
of a neutron star, should be consider as an effective solution of the problem
that oversimplifies the real physical situation, where fundamental gravito-
electrodynamical effects exist. We present here the self-consistent equilib-
rium equations governing a degenerate neutron, proton and electron fluid in
beta equilibrium within the framework of relativistic quantum statistics and
of the Einstein-Maxwell equations. From this formulation descend the gen-
eral relativistic Thomas-Fermi equation, which, as in the case of atoms, plays
a crucial role by joining Coulombian, gravitational and quantum-statistical
effects associated with the equilibrium state of a self-gravitating system of
degenerate fermions.

C.8.2. The equilibrium equations

We consider equilibrium configurations of a degenerate gas of neutrons, pro-
tons and electrons with total matter energy density E = ∑i=n,p,e Ei and pres-
sure P = ∑i=n,p,e Pi where Ei and Pi are the energy density and pressure of a

degenerate fluid of 1/2-spin fermions of mass mi, Fermi momentum PF
i and

number density ni = (PF
i )

3/(3π2h̄3).

We define at first, the generalized Fermi energy EF
i = eν/2µi − mic

2 + qiV
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for the i-particle specie, where qi is the particle unit charge, µi = ∂E/∂ni

is the free-chemical potential, and V denotes the Coulomb potential of the
configuration. Thus, the equations for the neutron star equilibrium config-
uration are given by the beta equilibrium condition, the general relativistic
Thomas-Fermi equilibrium condition for electrons and the Einstein-Maxwell
equations

EF
n + mnc2 = EF

p + mpc2 + EF
e + mec

2 , (C.8.2)

EF
e = eν/2µe − mec

2 − eV = constant , (C.8.3)

dM

dr
= 4πr2 E

c2
− 4πr3e−ν/2 d V̂/c2

dr
(np − ne), (C.8.4)

1

r

dν

dr
+

1 − eλ

r2
=

8πG

c4
eλ

[

P − e−(ν+λ)

8πα h̄ c

(

d V̂

dr

)2
]

, (C.8.5)

dP

dr
+

1

2

dν

dr
(E+ P) = −dPem

dr
− 4Pem

r
, (C.8.6)

d2V̂

dr2
+

d V̂

dr

[

2

r
− 1

2

(

dν

dr
+

dλ

dr

)]

= −4πα h̄ c eν/2eλ

{

np

− e−3ν/2

3π2h̄3c3
[(V̂ + mec

2)2 − m2
e c4eν]3/2

}

, (C.8.7)

where α denotes the fine structure constant, V̂ = EF
e + eV and Pem = −E2/(8π)

and we have introduced the metric gαβ = diag(eν(r),−eλ(r),−r2,−r2 sin2 θ)
for a spherically-symmetric non-rotating neutron star. The metric function λ

is related to the mass M(r) and the electric field E(r) = −e−(ν+λ)/2dV/dr
through

e−λ = 1 − 2GM(r)

c2r
+

Gr2E2(r)

c4
. (C.8.8)

It has been demonstrated in Rotondo et al. (2011d) that, from the above
system of equations follows that indeed all the generalized particle Fermi en-
ergies EF

i are constant through the entire configuration, for all particle-species
separately. This is in line with the results of Klein (1949), of Kodama and Ya-
mada (1972), and of Olson and Bailyn (1975).

C.8.3. Discussion

The inconsistency of locally neutral neutron stars was proven in Rotondo
et al. (2011d), where violation of the thermodynamic equilibrium condition of
constancy of the generalized particle Fermi energies was explicitly shown for
such configurations. Instead, globally neutral systems can be obtained from
the above self-consistent equations. The specific solution for non-strongly
interacting degenerate neutrons, protons and electrons extending from the
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center of the star all the way to the border was obtained in Rotondo et al.
(2011d). Although such a system cannot represent a realistic neutron star,
essential gravito-electrodynamical effects were shown and the typical depth
of the Coulomb potential was obtained.

In realistic neuron stars, the degenerate neutrons, protons and electrons are
confined to the core and are subjected to the external pressure of the crust.
In this more general case, the constancy of the generalized Fermi energy of
the electrons still plays a fundamental role in the matching and boundary
conditions. All the new gravito-electrodynamical effects discussed here de-
serve further analysis in view of the recent developments in high-energy as-
trophysics pointing to the relevance of overcritical electric fields in neutron
stars and black holes (Ruffini et al., 2010b). The introduction of strong in-
teractions to the energy-momentum tensor, to the four-vector current and,
consequently, to the Einstein-Maxwell equations establishes a more general
formulation of the problem (Rueda et al., 2011).
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C.9. The Outer Crust of Neutron Stars

C.9.1. The General Relativistic Model

The Outer Crust of Neutron Stars is the region of Neutron Stars characterized
by a mass density less than the “neutron drip” density ρdrip = 4.3 · 1011g cm−3

(Baym et al., 1971b) and composed by White Dwarf - like material (fully ion-
ized nuclei and free electrons). Its internal structure can be described by the
Tolman-Oppenheimer-Volkoff (TOV) equation

dP

dr
= −

G
(

ρ + P
c2

) (

m + 4πr3P
c2

)

r2
(

1 − 2Gm
rc2

) , (C.9.1)

together with the equation
dm

dr
= 4πr2ρ, (C.9.2)

where m, ρ and P are the mass, the density and the pressure of the system.
We have determined Mcrust and ∆Rcrust by integrating eq. (C.9.1) and (C.9.2)
from rin = Ris, where Ris is the radius of the inner part of the star (the base of
the Outer Crust).
The pressure and the mass density of the system are

P ≈ Pe, (C.9.3)

ρ ≈ µemnne. (C.9.4)

Pe is the pressure of electrons, given by Shapiro and Teukolsky (1983)

Pe = ke φe, (C.9.5)

where

ke =
mec

2

8π2λ3
e

, (C.9.6)

φe = (C.9.7)

ξe

(

2

3
ξ2

e − 1

)

√

ξ2
e − 1 + log

(

ξe +
√

ξ2
e − 1

)

, (C.9.8)

with λe the Compton wavelenght of electrons, ξe =
√

1 + x2
e and xe the

Fermi momentum of electrons normalized to (mec). µe is the mean molecular
weight per electron that, for a completely ionized element of atomic weight
A and number Z, is equal to A/Z (for simplicity, we assume µe = 2), mn is
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the mass of neutrons and ne is the number density of electrons

ne =
x3

e

3π2λ3
e

. (C.9.9)

In eq. (C.9.4) we have assumed the local charge neutrality of the system.

C.9.2. The mass and the thickness of the crust

We have integrated eq. (C.9.1) and (C.9.2) for different sets of initial condi-
tions; in fig. C.38 are shown the results obtained assuming

10 km ≤ Ris ≤ 20 km,

1M⊙ ≤ Mis ≤ 3M⊙

and an initial pressure equal to 1.6 1030dyne cm−2, that corresponds to a mass
density equal to ρdrip.

It can be seen that Mcrust has values ranging from 10−6M⊙ to 10−3M⊙; both
Mcrust and ∆Rcrust increase by increasing Ris and decreasing Mis (see fig. C.38,
C.39).
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Figure C.38.: Values of Mcrust in units of solar masses, as function of Ris, for
different values of Mis (see legend).

It’s important to note that the values estimated for Mcrust strongly depend
on the values of Mis and Ris used; in particular, the values of Mis considered
are greater that the maximum mass calculated for neutrons stars with a core
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Figure C.39.: Values of thickness of the Outer Crust ∆Rcrust in km, as function
of Ris, for different values of Mis (see legend).

of degenerate relativistic electrons, protons and neutrons in local charge neu-
trality (Mmax = 0.7M⊙ (Oppenheimer and Volkoff, 1939)). The outstanding
theoretical problem to address is to identify the physical forces influencing
such a strong departure; the two obvious candidate are the electromagnetic
structure in the core and/or the strong interactions.

C.9.3. The Fireshell Model of GRBs

In the Fireshell Model (Ruffini, 2008a) GRBs are generated by the gravita-
tional collapse of the star progenitor to a charged black hole. The electron-
positron plasma created in the process of black hole (BH) formation expands
as a spherically symmetric “fireshell”. It evolves and encounters the bary-
onic remnant of the star progenitor of the newly formed BH, then is loaded
with baryons and expands until the trasparency condition is reached and the
Proper - GRB is emitted. The afterglow emission starts due to the collision
between the remaining optically thin fireshell and the CircumBurst Medium.
A schematization of the model is shown in fig. C.40.
The baryon loading is measured by the dimensionless quantity

B =
MBc2

Edya
, (C.9.10)
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Figure C.40.: Schematization of the Fireshell Model of GRBs.

GRB MB/M⊙
970228 5.0 × 10−3

050315 4.3 × 10−3

061007 1.3 × 10−3

991216 7.3 × 10−4

011121 9.4 × 10−5

030329 5.7 × 10−5

060614 4.6 × 10−6

060218 1.3 × 10−6

Table C.4.: GRBs and correspondent values of MB used to reproduce the ob-
served data within the Fireshell Model, in units of solar masses.

where MB is the mass of the baryonic remnant and Edya is the energy of the
dyadosphere, the region outside the horizon of a BH where the electric field
is of the order of the critical value for electron positron pair creation (Heisen-
berg and Euler, 1936; Sauter, 1931; Schwinger, 1951, 1954a,b)

Ec =
m2

e c3

eh̄
≈ 1016 V cm−1. (C.9.11)

B and Edya are the two free parameters of the model.

C.9.4. The mass of the crust and MB

Using the values of B and Edya constrained by the observational data of sev-
eral GRBs and eq. (C.9.10), we have obtained the correspondent values of MB

(see table C.4).
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It can be seen that these values are compatible with the ones of Mcrust.

1595



C. Neutron Stars Physics and Astrophysics

C.10. Cooling of young neutron stars in GRB

associated to Supernova

C.10.1. Introduction

The investigation of the thermal evolution of neutron stars is a powerful tool
to probe the inner composition of these objects. The cooling of neutron stars
has been investigated by many authors, where many different microscopic
models were assumed (see Schaab et al., 1996; Page et al., 2004, 2006, 2009;
Blaschke et al., 2000; Grigorian et al., 2005; Blaschke et al., 2006; Negreiros
et al., 2010). Most of the research on the thermal evolution of compact stars
focus on objects with ages greater than 10-100 years, which is comprehensible
if one consider that the thermal data, currently available to us, is for pulsars
with estimated ages of or greater than 330 years (Page et al., 2004, 2009). In
this letter we discuss the thermal evolution of young neutron stars, in the
little explored time window that spans from ages greater than 1 minute (just
after the proto-neutron star regime (Prakash et al., 2001)) to ages ≤ 10–100
years, when the neutron star becomes isothermal (see Gnedin et al., 2001, for
details).

We discuss the possibility that the late X-ray emission (URCA hereafter
1) following a few GRBs associated with SNe; e.g. URCA-1 in GRB980425-
SN1998bw (Ruffini et al., 2004; Fraschetti et al., 2005; Bernardini et al., 2008),
URCA-2 in GRB030329-SN2003dh (Bernardini et al., 2004, 2005b), and URCA-
3 in GRB031203-SN2003lw (Bernardini et al., 2005a; Ruffini et al., 2007b, 2008)
(see Fig. C.43 for details), might actually be originated by young (t ∼ 1
minute–(10–100) years), hot (T ∼ 107–108 K) neutron stars, that are remnants
of the SN (Ruffini et al., 2007b) and which we have here called neo-neutron
stars. Relevant also are the observations of the isolated Type Ic Supernova SN
1994I (Immler et al., 2002) and SN 2002ap (Soria et al., 2004) which present
late emissions similar to the ones observed in URCA-1, URCA-2, and URCA-
3.

In this letter we propose a revision of the boundary conditions usually em-
ployed in the thermal cooling theory of neutron stars, in order to match the
proper conditions of the atmosphere at young ages. We also discuss the im-
portance of the thermal processes taking place in the crust, which also have
important effects on the initial stages of thermal evolution. We stress that we
are not calling into question the validity of the current treatment of the at-
mosphere of compact stars but, instead, we point out the need of extending

1The name URCA-1 and URCA-2 mentioned here were given to these sources when pre-
sented for the first time at the MG10 meeting held in Rio de Janeiro in the town of URCA.
The location of the MG10 meeting was very close to the “Cassino da URCA” where
George Gamow and Mario Schoenberg conceived the process of neutrino emission for
the cooling process of neutron stars which also took the name from the town of URCA,
the URCA process (see e.g detailed history in Ruffini et al., 2005; Gamow, 1970)
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them to appropriately describe the conditions of neo-neutron stars.

C.10.2. Cooling of Young, Hot Neutron Stars

There are three important ingredients that govern the thermal evolution of a
compact star, these are: 1) the microscopic input, that accounts for the neu-
trino emissivities, specific heat and thermal conductivity; 2) the macroscopic
structure of the star, namely its mass, radius, pressure profile, crust size, etc.;
and 3) the boundary condition at the surface of the star, that provides a re-
lationship between the mantle temperature and that of the atmosphere, the
latter being what we ultimately observe. These ingredients have been ex-
tensively studied, and a comprehensive review can be found in Page et al.
(2006). As discussed in Gnedin et al. (2001), during the initial stages of ther-
mal evolution (ages ≤ 10 − 100 years), the core and the crust of the neutron
star are thermally decoupled. This is due to the fact that the high density core
is emitting neutrinos at a much higher rate than the crust, which causes it to
cool down more quickly. This effectively means, that initially the neutron
star is cooling “inside out”, with the core colder than the outer layers. This
scenario is schematically depicted in Figure C.41.

The dominant neutrino emission processes in the crust are given by the
Bremsstrahlung, plasmon decay, and electron-positron annihilation processes.
Following the footsteps of Gnedin et al. (2001), we calculate the thermal evo-
lution of neutron stars, by adding artificially a phenomenological source of
heat (see details in Sec. C.10.4). This allow us to estimate how much heat is
needed, so that the thermal evolution of a neo-neutron star matches the X-ray
light curve of late emission of GRB-SN.

After this initial core-crust decoupled state, the “cooling wave” originated
in the core reaches the crust, and the object becomes isothermal. The time
scale of this process is between 10–100 years, depending on the properties
of the crust (Gnedin et al., 2001). This means that during the initial stages of
thermal evolution the crust shields the core, and all the information we might
obtain at this stage, refers only to the crust and to the atmosphere of the star.
This raises another issue, that concerns the atmosphere of the star. The ther-
mal connection between the mantle and the atmosphere is what defines the
photon luminosity, which is what we observe. Therefore, the appropriate de-
scription of the atmosphere is key to the correct understanding of the thermal
evolution of neutron stars. In the usual approach, the thermal relaxation-time
of the atmosphere is assumed to be much smaller than that of the neutron
star, furthermore neutrino emissions from the atmosphere are also consid-
ered negligible (see Gudmundsson et al., 1983). Under these assumptions,
and assuming a plane-parallel approximation (which is reasonable since the
atmosphere is ∼ 100 m thick), one can get a relationship between the temper-
ature of the mantle Tb and the temperature of atmosphere Te, or equivalently
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Figure C.41.: Schematic representation of the cooling of a young neutron star.
Due to stronger neutrino emissivities, the core of the star cools down more
quickly than the crust, causing the star to cool inside out. Darker and lighter
areas represent higher and lower temperatures respectively.

1598



C.10. Cooling of young neutron stars in GRB associated to Supernova

the luminosity Le. Gudmundsson et al. (1983) have originally found a Tb-
Te relationship that depends on the surface gravity of the neutron star. This
relationship was further developed by Potekhin et al. (1997), to account for
the possibility of mass accreted in the initial stages, and of magnetic fields
effects. As pointed out by Gudmundsson et al. (1983), such assumptions for
the atmosphere of the star are only valid for objects older than a few 10 years,
when the temperature, for densities below 1010 g/cm3, has dropped below
109K. In fact, we see that the current boundary conditions yields tempera-
tures ∼ 107 K (L ∼ 1037 erg/s, equivalently) for young neutron stars (age
< 1–10 years). This should raise some suspicion since proto-neutron stars
studies (see Prakash et al., 2001, and references therein), indicate that neu-
tron stars just after this regime have temperatures ∼ 1010–1011 K.

The properties of the atmosphere of a sufficiently hot, nascent neutron
star should differ significantly from those considered in Gudmundsson et al.
(1983) and Potekhin et al. (1997). Especially since at hot temperatures (T &
109 K) the atmosphere might not be transparent to neutrinos, and thus the
neutrino transport equations have to be considered. The coupled equations
of neutrino and photon transport, in the atmosphere of a neutron star, were
solved by Salpeter and Shapiro (1981), and Duncan et al. (1986). In these
works the authors have performed detailed calculations of the atmosphere
properties of hot neutron stars. They have found the following photon lumi-
nosity, as observed at infinity,

L∞ = 50 × t−7/12 × (T10)
7/4 × (R10)

17/9 ×
(

M

M⊙

)−1

× LE, (C.10.1)

where t is time in seconds, T10 is the initial temperature in units of 10 MeV,
R10 is the neutron star radius in units of 10 km, M is the neutron star mass,
and LE ∼ 2.0 × 1038 erg/s is the Eddington luminosity. Duncan et al. (1986)
found that the above expression should be valid for at least the initial 100 s.
In Fig. C.42 we can see how the luminosity of the star changes for the first 100
s, for stars with different initial temperatures.

According to these results, during the initial 100 s, the photon luminosity
emerging from the atmosphere will be higher than the Eddington luminosity.
This implies that there will be mass loss, due to neutrino-driven winds from
the young atmosphere. As shown by Duncan et al. (1986), the total mass loss
only becomes appreciable for neutron stars with large radii and high initial
temperatures. For a typical neutron star with the canonical mass of 1.4M⊙, a
radius of 13 km and initial temperature of ∼ 1011 K, the total mass loss was
estimated to be ∼ 6.2 × 10−6M⊙.

In addition to the high luminosities associated to the atmosphere of young
neutron stars, one need also to consider fallback onto the surface of the neu-
tron star. Potekhin et al. (1997) discussed how fallback, at earlier stages of
evolution, would modify the properties of the atmosphere, and hence of the
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Figure C.42.: Luminosity of a hot nascent neutron star as observed at infinity
given by Eq. (C.10.1) during the initial 100 s (Duncan et al., 1986), with the
initial temperatures indicated. The neutron star is assumed to have a mass of
1.4M⊙, and a radius of 13 km.
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boundary conditions. Once more however, in this investigation, such a fall-
back is assumed to have happened at early times and the modified boundary
conditions are only valid if the fallback has already ceased. Chevalier (1989)
has studied the fallback onto young neutron stars, and found that while there
is an envelope, a luminosity near the Eddington limit should be present. Fur-
thermore, the authors have found that in this case the energy from the en-
velope can be radiated away in a time of ∼ 1 year. This timescale however,
might be lengthened if effects of rotation are accounted during the fallback.
In addition to that, Turolla et al. (1994) have discussed the possibility of “hot
solutions” for the atmosphere of neutron stars undergoing spherical accre-
tion. It was shown that for L ≥ 10−2LE the temperature at the atmosphere of
a neutron star might be ∼ 109–1011 K.

C.10.3. Late X-Ray Emission in GRBs associated to
Supernovae: URCAs

It seems clear to us that, after the analysis of the scenario described above,
we must extend the current model for the boundary conditions used in cool-
ing calculations, to include the effects of a high temperature atmosphere,
with possibly super-Eddington luminosity. Up until this point however, lit-
tle attention has been given to the thermal evolution of young neutron stars,
mainly due to the absence of observational data of neutron stars with ages <
330 years. It has been recently proposed (see Ruffini et al., 2007b, for details)
that the long lasting X-ray emission called there URCA (see Fig. C.43) of a few
GRBs associated to SNe; URCA-1 in GRB980425-SN1998bw (Ruffini et al.,
2004; Fraschetti et al., 2005; Bernardini et al., 2008), URCA-2 in GRB030329-
SN2003dh (Bernardini et al., 2004, 2005b), and URCA-3 in GRB031203-SN2003lw
(Bernardini et al., 2005a; Ruffini et al., 2007b, 2008), might actually be orig-
inated in the compact star remnant of the SN: a neo-neutron star. In this
scenario the GRB is described as the core collapse of a massive star, whose
remnant is a black hole. This massive star is supposed to be in a binary sys-
tem, whose companion is on the verge of going supernova. The GRB triggers
the supernova explosion in the companion star, which in turns leaves behind
a neutron star (Ruffini et al., 2001). An alternative scenario has been recently
suggested in which the so-called GRB is actually not a GRB but the observed
X-ray emission originates from a collapsing core: a proto-neutron star leading
directly to a SN explosion. This concept is is very similar to the one of a proto-
black hole introduced in Ruffini et al. (2011, 2010a); Izzo et al. (2011), where
the emission from the collapsing core is clearly well distinguished from the
GRB. In that case the collapsing core leads to the formation of the black hole
while in the present case it leads to the formation of a neutron star.

Both scenarios lead to the formation of a neo-neutron star and they are
supported by the observation of Supernova 1979C (Patnaude et al., 2011),
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Table C.5.: a) see Kaneko et al. (2007); b) Mazzali, P., private communica-
tion at MG11 meeting in Berlin, July 2006, Iwamoto et al. (1998); c) evaluated
fitting the URCAs with a power law followed by an exponentially decay-
ing part; d) evaluated assuming a mass of the neutron star M = 1.5M⊙ and
T ∼ 5–7 keV in the source rest frame; e) see Galama et al. (1998); Greiner
et al. (2003); Prochaska et al. (2004); Mirabal et al. (2006). Here Etot

e± is the total

energy of GRB, Ebolom
SN and Ekin

SN are the bolometric and the kinetic energy of
the SN, EURCA is the energy of the late X-ray emission URCA (see Fig. C.43),
RNS is the radius of the neutron star and z is the redshift of the event.

GRB
Etot

e±
(erg)

Ebolom
SN

(erg)a
Ekin

SN
(erg)b

EURCA
(erg)c

Etot
e±

EURCA

Ekin
SN

EURCA

RNS

(km)d ze

980425 1.2 × 1048 2.3 × 1049 1.0 × 1052 3 × 1048 0.4 1.7 × 104 8 0.0085

030329 2.1 × 1052 1.8 × 1049 8.0 × 1051 3 × 1049 6 × 102 1.2 × 103 14 0.1685

031203 1.8 × 1050 3.1 × 1049 1.5 × 1052 2 × 1049 8.2 3.0 × 103 20 0.105

060218 1.8 × 1050 9.2 × 1048 2.0 × 1051 ? ? ? ? 0.033

where a similar X-ray light curve also followed the supernova. In Fig. C.43
we show the X-ray light curve associated with the URCAs.

From Fig. C.43 we can see that the X-ray luminosities of these sources are
of the same magnitude as that expected for neo-neutron stars, as discussed
above. In Table C.5 we summarize the representative parameters of the four
GRB-SN systems, including the very large kinetic energy observed in all SNe
(Mazzali, 2006). We have also included the association GRB060218-SN2006aj
(see Dainotti et al., 2007, 2010, for details). It must be noted that similar pro-
longed X-ray emission has been observed also in connection with other Type
Ic SN not associated with GRBs, like e.g. SN1994I (Immler et al., 2002) and
SN2002ap (Soria et al., 2004) (see Fig. C.44 for details).

C.10.4. Neo-Neutron Star Luminosity and the URCAs

Another important ingredient for the cooling of young neutron stars are the
crust properties. As illustrated in Fig. C.41, due to the stronger neutrino emis-
sion from the core, during the initial stages the core and crust are thermally
decoupled. For that reason, the initial stages of the thermal evolution reflects
the properties of the crust, while the core remains invisible. Thus the proper
description of the crust structure and composition, is also fundamental for
understanding the initial thermal evolution stages of a neutron star. We now
briefly discuss the current understanding of the crustal processes and how
such might be related with the data available from the URCAs.

There are several active emission mechanisms in the neutron star crust,
e.g. e-Ion Bremsstrahlung, plasmon decay, e+-e− annihilation, e-e and n-n
Bremsstrahlung, synchrotron emission, as well as Cooper pair processes for
temperatures smaller than the critical temperature for superfluidity Tcrit. How-
ever, as shown by Yakovlev et al. (2001), for temperatures above 108 K, which
is the regime we are interested, the first three processes are the dominant
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ones. For instance, synchrotron emission channels might become slightly rel-
evant, but only for T < 108 K and for very high magnetic fields > 1014 G.
The Cooper pair mechanism, possibly important for objects of a few hundred
years old like Cas A (see e.g. Page et al., 2011; Shternin et al., 2011, for details),
is irrelevant in the present case since we are dealing with neutron star ages
< 10 years and thus temperatures well above Tcrit.

At temperatures T ∼ 3 × 109 K, we can write for the most important emis-
sion processes in the crust

ǫB ∼ 1021erg s−1cm−3, (C.10.2)

ǫP ∼ 1022erg s−1cm−3, (C.10.3)

ǫep ∼ 1019erg s−1cm−3, (C.10.4)

where ǫi denotes the emissivity and the indexes B, P, ep denote the Bremsstrahlung,
plasmon decay, and pair annihilation processes, respectively.

In order to estimate the amount of heat needed to match the theoretical
thermal evolution of a neo-neutron star to the light curve of the URCAs we
have added a phenomenological source of heat parametrized by

H = H0 e−t/τS , (C.10.5)

with H0 being the magnitude of the heat source, and τS being the time scale
in which it is active. For our calculations we set τS = 1 year.

In addition, we have introduced a phenomenological boundary condition
for the early stages of evolution of the surface temperature Ts that follows

the form Ts = Tx gs1/4
14 T0.55

8 K, where Tx = 0.87× 106 + (T0 − 0.87x106) e−t/τS

K, T8 is the mantle temperature Tb in units of 108 K, T0 is the initial tem-
perature of the atmosphere, and gs14 is the surface acceleration of gravity in
units of 1014 cm/s2. With this new boundary condition we can mimic the
high temperature of the atmosphere for young neutron stars by setting the
temperature at early times to a higher value and, for times greater than τS, it
asymptotically goes to its traditional value ∼ 0.87 × 106 K.

In Fig. C.45 we show the cooling curves of neo-neutron stars resulting from
the presence of the heating source given by Eq. (C.10.5), in addition to the
traditional cooling processes of neutron stars. The cooling curves are ob-
tained self-consistently by solving the full, general relativistic, energy trans-
port and balance equations with no approximations as described in Schaab
et al. (1996); Page et al. (2006); Negreiros et al. (2010). We show also the ob-
served data for the X-ray light curve associated with the URCAs. This allow
us to identify the key factor leading to the matching of the neo-neutron star
luminosity with the X-ray emission of the URCAs.
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C.10.5. Discussion and Conclusions

The major role played by the neutrino emissions from the crust of a neo-
neutron star at the initial stages of the object is illustrated by Fig. C.45. In
addition, by calibrating our additional heating source at early times to H0 ∼
1012–1015 erg/g/s, we find a striking agreement of the luminosity obtained
from the cooling of a neo-neutron stars with the prolonged (t = 108–109 s)
X-ray emission observed in GRB associated with Supernova (see Fig. C.45 for
details). This could indicate that something might be missing in our current
understanding of the crust of neutron stars. It might be that, as is the case
for the atmosphere, we need to further develop our current models for the
crust, as to describe properly the properties of neo-neutron stars. The tra-
ditional thermal processes taking place in the crust might be enhanced by
the extreme high temperature conditions of neo-neutron star and, additional
heating processes not yet studied within this context could also take place
under such conditions and deserve further analysis.

Particularly interesting in this respect are the processes of e+e− pair cre-
ation expected to occur in the interphase between the core and the crust dur-
ing the neutron star formation leading to the appearance of critical fields (see
Ruffini et al., 2007d; Ruffini, 2008b; Rueda et al., 2010a,b; Popov, 2010; Ruffini
et al., 2010b; Rotondo et al., 2011c,d,e,a; Rueda et al., 2011, for details)

It is also worth to mention that the additional heating source needed at
early times, H0 ∼ 1012–1015 erg/g/s (or H0 ∼ 10−6–10−3 MeV/Nucleon/s),
is in striking agreement with the heat released from nuclear fusion reactions,
radiative neutron captures and photodisintegrations in the early stages of
neutron star mergers found by Goriely et al. (2011a,b). Fission as well as
β-decays have been also there included; i.e neutron-induced fission, sponta-
neous fission, β-delayed fission, photofission, as well as β-delayed neutron
emission.

All this suggests the exciting possibility that we are, for the first time, ob-
serving a nascent hot neutron star. This possibility alone warrants further
studies on this subject, so we might obtain a more concrete picture of the ther-
mal evolution of neo-neutron stars. A proposal has been recently submitted
by E. Pian et al. to the Chandra satellite to observe if a similar prolonged
X-ray emission exists also in GRB100316D associated with SN2010bh (Pian
et al., 2011). We encourage also dedicated observations of isolated SN in view
of the similarities between URCA-1–URCA-3 and the Type Ic Supernova SN
1994I (Immler et al., 2002) and SN 2002ap (Soria et al., 2004).
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Figure C.43.: Synthetic light curves of GRB980425 (A) (Ruffini et al., 2004;
Fraschetti et al., 2005; Bernardini et al., 2008) , GRB030329 (B) (Bernardini
et al., 2004, 2005b) and GRB031203 (C) (Bernardini et al., 2005a; Ruffini et al.,
2007b, 2008) . The solid curves represent the hard X-ray emission (10-200 keV
range) and the triangles are 2-10 keV flux points. The optical luminosities of
the SNe accompanying these GRBs are also reported with crosses (see Ruffini
et al., 2007b, for details). The curves fitting the late X-ray luminosity (URCAs)
are qualitative cooling curves based on Canuto (1978); see also Ruffini et al.
(2004, 2007b, 2008); Bernardini et al. (2004, 2005a,b, 2008); Fraschetti et al.
(2005), for details.
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Figure C.44.: X-ray light curves of the counterparts of GRB980425-SN1998bw
and of two Type Ic SNe not accompanied by GRBs: SN1994I (“normal”) and
SN2002ap (broad-lined). The data are from Pian et al. (2000); Immler et al.
(2002); Kouveliotou et al. (2004); Soria et al. (2004).
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Figure C.45.: Thermal evolution of neo-neutron stars for selected values of
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KÜLEBI, B., JORDAN, S., EUCHNER, F., GÄNSICKE, B.T. AND HIRSCH, H.
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MÜTHER, H., PRAKASH, M. AND AINSWORTH, T.L.
≪The nuclear symmetry energy in relativistic Brueckner-Hartree-Fock cal-
culations≫.
Physics Letters B, 199, pp. 469–474 (1987).

MYERS, W.
≪Nuclear masses and deformations≫.
Nuclear Physics A, 81, pp. 1–60 (1966).
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