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A new scheme for computing dynamical evolutions and gravitational radiations for intermediate-
mass-ratio inspirals (IMRIs) based on an effective one-body (EOB) dynamics plus Teukolsky per-
turbation theory is built in this paper. In the EOB framework, the dynamics essentially affects the
resulted gravitational waveform for binary compact star system. This dynamics includes two parts.
One is the conservative part which comes from effective one-body reduction. The other part is the
gravitational back reaction which contributes to the shrinking process of the inspiral of binary com-
pact star system. Previous works used analytical waveform to construct this back reaction term.
Since the analytical form is based on post-Newtonian expansion, the consistency of this term is
always checked by numerical energy flux. Here we directly use numerical energy flux by solving the
Teukolsky equation via the frequency-domain method to construct this back reaction term. And the
conservative correction to the leading order terms in mass-ratio is included in the deformed-Kerr
metric and the EOB Hamiltonian. We try to use this method to simulate not only quasi-circular
adiabatic inspiral but also the nonadiabatic plunge phase. For several different spinning black holes,
we demonstrate and compare the resulted dynamical evolutions and gravitational waveforms.

PACS numbers: 04.30.Db,04.25.Nx,04.30.-w,95.30.Sf

I. INTRODUCTION

Intermediate-mass-ratio inspirals (IMRIs): compact objects with stellar mass spiralling into intermediate mass
(50 ≤ M ≤ 1000M⊙) black holes are expected to be a key source for LIGO, VIRGO and the future Einstein
telescope. It was estimated that Advanced LIGO can see 3-30 such events per year out to distances of several hundred
Mpc[1]. Due to a small mass ratio of IMRIs (µ/M ∼ 10−2 − 10−3), the small body lingers in the large black holes
strong-curvature region for about hundreds wave cycles before merger, and then produce a good signal-to-noise ratio.
Considering the waveform-match technology of LIGO’s data analysis, ones should first model enough accurate and
numerous waveform templates for IMRI sources.
The post-Newtonian approximation has completely broken down in this high relativistic regime. Up to now,

numerical relativity still encounters some difficulties to simulate the binary black hole systems when the mass ratio
becomes small. The newest result achieves the mass ratio 0.01 (without spin) only with two orbit’s evolution[2].
For extreme-mass-ratio inspirals (EMRIs), the mass ratio about 10−4 − 10−7, the small objects can be treated as a

small perturbation to the large black holes gravitational field and can be modeled by black-hole perturbation theory
built by Regge, Wheeler and Zerilli in Schwarzschild spacetime[3, 4] and by Teukolsky in Kerr background[5, 6]. For
example, a successful approach is that the orbit of small body is just geodesics of test particle in the background of
central black hole, and the spiral of small object is simulated as a sequence of adiabatically shrinking geodesics by
changing the constants of motion due to gravitational radiation[7–16]. But, when mass ratio increases, for IMRIs, the
small object cannot be treated as test particle and the self-gravitational potential of small body becomes considerable.
And perhaps the linear perturbation approximation is not valid in this case.
In last decade, using effective one-body (EOB) resummed analytical formalism [17–23] to develop accurate analytical

models of dynamics and waveforms of black hole binaries has gotten some exciting results[24–32]. Recently, some
researches used EOB to model the dynamical evolution of IMRIs and extract waveforms via a multipolar Regger-
Wheeler-Zerilli type perturbation approach[33–35]. And an effort of constructing the EOB waveform models for
EMRIs by calibration of several high-order post-Newtonian parameters was also presented [36, 37].
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The framework of effective one-body has two building blocks which are dynamics and the corresponding waveform.
But the dynamics essentially affects the resulted gravitational waveform for binary compact star system. This dy-
namics includes two parts. One is the conservative part which comes from effective one-body reduction. The other
part is the gravitational back reaction which contributes to the shrinking process of the inspiral of binary compact
star system. Previous works used analytical waveform to construct this back reaction term. Since the analytical form
is based on some assumptions, the consistency of this term is always checked by numerical energy flux. Differently
we directly use numerical energy flux to construct this back reaction term in this work.
Considering that the perturbation method works well for intermediate mass ratio binaries[38, 39], in this paper,

we model the gravitational wave sources of IMRIs by combining the EOB frame with the Teukolsky perturbation-
based energy fluxes. Thanks to the EOB theory, we treat the binary system by an effective particle mass µ =
m1m2/(m1 +m2) and a deformed Kerr (or Schwarzschild if without spin) spacetime with mass M = m1 +m2 where
m1 is the mass of massive black holes and m2 the mass of small body. The gravitational energy fluxes and waveforms
are calculated by solving the Teukolsky equation in frequency domain not by the EOB fluxes and waveforms, as well
as the inspiral dynamics is computed not following the adiabatic approximation but by the EOB dynamics which was
developed in Refs.[33–35].
We must emphasize here that the scheme we used in this paper is different with the works by Yunes et al. which

used the Teukolsky fluxes to calibrate EOB waveforms[36, 37], and also different with the references [33–35] which use
perturbation method to read the waveforms but not to radiation reaction. Our calculation covers both quasi-circular
inspiral and nonadiabatic plunge without merger and ringdown stages. The results in this paper should be important
for checking the EOB PN-expanded energy flux. With our method, one can obtain information for IMRIs which is
not yet been accessible by full numerical relativity. Moreover, our method may be expanded to elliptic and even
non-equatorial orbits. In the future works of this series, we will expand this calculation to solve Teukolsky equation
in time domain and model the entire process of IMRIs including merger and ringdown.
This paper is organized as follows. In the next section, we introduce EOB Hamiltonian and dynamics briefly. Then

we describe our numerical technologies used in solving the Teukolsky equation to obtain fluxes and waveforms. In
Sec. IV we present our calculation results for several IMRI cases. Finally, conclusion and discussion of this work are
given in the last section.
We use units G = c = 1 and the metric signature (−,+,+,+). Distance and time are measured by the effective

Kerr black-hole mass M .

II. EOB HAMILTON WITH DEFORMED KERR BACKGROUND

The well-known EOB formalism was first introduced by Buonanno and Damour about ten years ago to model
comparable-mass black hole binaries[17, 18], and was also applied in small mass-ratio systems[33–35, 40]. Here we
assume an IMRI system with central Kerr black holem1 and inspiralling objectm2 which is restricted on the equatorial
plane of m1, total mass M = m1 +m2, reduced mass µ = m1m2/M and symmetric mass ratio ν = µ/M . Here we
don’t consider the spin of the small object. Then the deformed Kerr metric takes the form [32]

gtt = − Λt

∆tΣ
, (1)

grr =
∆r

Σ
, (2)

gθθ =
1

Σ
, (3)

gφφ =
1

Λt

(
−
ω̃2
fd

∆tΣ
+

Σ

sin2 θ

)
, (4)

gtφ = − ω̃fd

∆tΣ
(5)
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where

Σ = r2 + a2 cos2 θ, (6)

∆t = r2[A(u) +
a2

M2
u2], (7)

∆r = ∆tD
−1(u), (8)

Λt = (r2 +M2a2)2 −M2a2∆t, (9)

ω̃fd = 2Mar + ωfd
1 ν

aM3

r
+ ωfd

2 ν
Ma3

r
, (10)

where u =M/r and

A(u) = 1− 2u+ 2νu3 + ν(
94

3
− 41

32
π2)u4, (11)

D−1(u) = 1 + log[1 + 6νu2 + 2(26− 3ν)νu3]. (12)

Note that a is the so-called deformed-Kerr spin parameter which is not exactly equal to the spin parameter of Kerr

black hole itself. The values of ωfd
1 and ωfd

2 given by a preliminary comparison of EOB model with numerical relativity
results are about -10 and 20 respectively[41, 42].
The EOB Hamiltonian takes the form

HEOB =M
√
1 + 2ν(Heff/µ− 1). (13)

The effective Hamiltonian Heff in this paper is just the Hamiltonian of a non-spinning (NS) particle in the deformed-
Kerr metric

HNS = βipi + α
√
µ2 + γijpipj , (14)

and

α =
1√
−gtt

, (15)

βi =
gti

gtt
, (16)

γij = gij − gtigtj

gtt
. (17)

With all of this, the effective Hamiltonian(14) can be written as

HNS = pφ
ω̃fd

Λt
+

(
∆tΣ

Λt

)1/2
√
µ2 +

Σ

Λt sin
2 θ
p2φ +

∆r

Σ
p2r. (18)

The EOB dynamical evolution equations under radiation reaction can be given as

ṙ =
∆t∆rpr

HEOBHrΛt
, (19)

φ̇ =
∆tΣ

2

Λ2
t

pφ
HEOBHr

≡ Ωφ, (20)

ṗr = (∂HNS/∂r)/HEOB, (21)

ṗφ = F̂φ, (22)

where Hr = HNS − pφ
ω̃fd

Λt
. F̂φ (of order O(ν)) represents the non conservative radiation reaction force. Following the

expression given in [34, 35, 43], we have

F̂φ ≡ −32

5
νΩ5r4f̂DIN, (23)

where f̂DIN = F lmax/FNewt is the Newton normalized energy flux up to multipolar order lmax. In EOB framework,
F lmax is given by “improved resummation” technique of Ref.[43] for non-spinning binary and Ref.[23] for spinning
one. In this paper, we use energy flux calculated by Teukolsky perturbation theory instead of EOB energy flux in
Eq.(22). As discussed in Ref.[34], the EOB dynamical equations (19-22) don’t make any adiabatic approximation
which is extensively used to model EMRIs by solving Teukolsky equation [10–14].



4

III. TEUKOLSKY EQUATION AND NUMERICAL CALCULATION

A. The Teukolsky equation

The Teukolsky formalism considers perturbation on the Weyl curvature scale ψ4 instead of metric perturbation like
Regge-Wheeler-Zerilli equations. For Schwarzschild black holes these two formalisms are equivalent, but Teukolsky
formalism facilitates us to study super-massive spinning black hole. Different to time domain method in [33–35], we
decompose ψ4 in the frequency domain [5],

ψ4 = ρ4
∫ +∞

−∞

dω
∑

lm

Rlmω(r) −2S
aω
lm(θ)eimφe−iωt, (24)

where ρ = −1/(r − ia cos θ). The function Rlmω(r) satisfies the radial Teukolsky equation

∆2 d

dr

(
1

∆

dRlmω

dr

)
− V (r)Rlmω = −Tlmω(r), (25)

where Tlmω(r) is the source term, and the potential is

V (r) = −K
2 + 4i(r −M)K

∆
+ 8iωr + λ, (26)

where K = (r2 + a2)ω −ma, λ = Elm + a2ω2 − 2amw − 2. The spin-weighted angular function −2S
aω
lm(θ) obeys the

following equation,

1

sin θ

d

dθ

(
sin θ

d −2S
aω
lm

dθ

)
+

[
(aω)2 cos2 θ + 4aω cos θ −

(
m2 − 4m cos θ + 4

sin2 θ

)
+ Elm

]
−2S

aω
lm = 0. (27)

The radial Teukolsky Eq.(25) has the general solution

Rlmω(r) =
R∞

lmω(r)

2iωBin
lmωD

∞
lmω

∫ r

r+

dr′
RH

lmω(r
′)Tlmω(r

′)

∆(r′)2
+

RH
lmω(r)

2iωBin
lmωD

∞
lmω

∫ ∞

r

dr′
R∞

lmω(r
′)Tlmω(r

′)

∆(r′)2
, (28)

where the R∞
lmω(r) and RH

lmω(r) are two independent solutions of the homogeneous Teukolsky equation. They are
chosen to be the purely ingoing wave at the horizon and purely outgoing wave at infinity respectively,

RH
lmω = Bhole

lmω∆
2e−ipr∗, r → r+

RH
lmω = Bout

lmωr
3eiωr∗ + r−1Bin

lmωre
−iωr∗, r → ∞; (29)

and

R∞
lmω = Dout

lmωe
ipr∗ +∆2Din

lmωre
−ipr∗, r → r+

R∞
lmω = r3D∞

lmωe
−iωr∗, r → ∞, (30)

where k = ω −ma/2Mr+ and r∗ is the “tortoise coordinate”. The solution (28) must be purely ingoing at horizon
and purely outgoing at infinity. That is,

Rlmω(r → ∞) = ZH
lmωr

3eiωr∗, (31)

Rlmω(r → r+) = Z∞
lmω∆

2e−ipr∗. (32)

The complex amplitudes ZH,∞
lmω are defined as

ZH
lmω =

1

2iωBin
lmω

∫ r

r+

dr′
RH

lmω(r
′)Tlmω(r

′)

∆(r′)2
,

Z∞
lmω =

Bhole
lmω

2iωBin
lmωD

∞
lmω

∫ ∞

r

dr′
R∞

lmω(r
′)Tlmω(r

′)

∆(r′)2
. (33)
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The particle in this paper is in circular orbit on the equatorial plane, thus the particle’s motion is described only
as the harmonic of the frequency Ωφ (20). We define

ωm = mΩφ. (34)

Then ZH,∞
lmω are decomposed as

ZH
lmω = ZH

lmδ(ω − ωm),

Z∞
lmω = Z∞

lmδ(ω − ωm). (35)

The amplitudes ZH,∞
lmω fully determine the energy fluxes of gravitational radiations,

Ė∞,H =
∑

lmω

|ZH,∞
lmω |2
4πω2

m

, (36)

and the gravitational waveform:

h+ − ih× =
2

r

∑

lm

ZH
lmω

ω2
m

Saωm

lm (θ)e−iωmt+imφ. (37)

In next subsection, we briefly introduce the traditional numerical technique solving Teukolsky equation by Sasaki-
Nakamura translation[44]. And in subsec.C we introduce a new numerical method solving Teukolsky equation by
Fujita and Tagoshi[45, 46].

B. The Sasaki-Nakamura equation

As mentioned in the above subsections, for getting ZH,∞
lm , we should integrate the homogenous version of Eq.(25).

But there is a difficulty when one numerically integrates Eq.(25) due to the long-range nature of the potential V (r) in
(25). In order to solve this problem, Sasaki and Nakamura developed the Sasaki-Nakamura function X(r), governed
by a short-ranged potential, to replace the Teukolsky function R(r) [44]. The Sasaki-Nakamura equation reads as

d2Xlmω

dr∗2 − F (r)
dXlmω

dr∗ − U(r)Xlmω = 0. (38)

The functions F (r), U(r) can be found in Ref.[44]. The Sasaki-Nakamura equation also admits two asymptotic
solutions,

XH
lmω = e−ipr∗, r → r+, (39)

XH
lmω = Aout

lmωP̄ (r)e
iωr∗ +Ain

lmωP (r)e
−iωr∗, r → ∞; (40)

and

X∞
lmω = Cout

lmωP̄ (r)e
ipr∗ + C in

lmωP (r)e
−ipr∗, r → r+, (41)

X∞
lmω = P̄ (r)e−iωr∗, r → ∞, (42)

where P (r), P̄ (r) can be found in Refs.[47, 48].
The solution of Eq.(38) is transformed to the solution of the Teukolsky equation by

RH,∞
lmω =

1

η

[(
α+

β,r
∆

)
∆XH,∞

lmω√
r2 + a2

− β

∆

d

dr

∆XH,∞
lmω√

r2 + a2

]
. (43)

The relations between the coefficients of the Sasaki-Nakamura function and the Teukolsky function are

Bin
lmω = −A

in
lmω

4ω2
, Bhole

lmω =
1

dlmω
, D∞

lmω = −4ω2

c0
, (44)

and the functions α, β, η, and dlmω are given explicitly in Ref.[44] and in Appendix B of [10].
Our numerical scheme to integrate the Sasaki-Nakumura equation has been used in Ref.[49] for spinning test

particle. The integrator we adopted is Runge-Kutta 7(8) and a variant of Richardson extrapolation is implemented

to accurately compute the value of XH,∞
lm in Eqs.(39-42) approaching to infinity and horizon. The calculation of

spin-weighted spheroidal harmonics in Eq.(27) and more details can be founded in Ref.[10].
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TABLE I: The gravitational wave luminosity at infinity for r = 6M and a = 0.9 (The data labeled “Ref.[45]” are kindly offered
by Dr. Fujita).

l |m| Ref.[45] This paper Numerical integration Relative error
2 2 4.61839129214686 × 10−4 4.61839129214674 × 10−4 4.6183912944 × 10−4 4.98 × 10−10

2 1 6.69474358662814 × 10−7 6.69474358662808 × 10−7 6.6947435969 × 10−7 1.49× 10−9

3 3 8.03430093731846 × 10−5 8.03430093731833 × 10−5 8.0343009232 × 10−5 1.76× 10−9

3 2 2.92125227685241 × 10−7 2.92125227685261 × 10−7 2.9212522761 × 10−7 2.40 × 10−10

3 1 4.30107466504698 × 10−9 4.30107466504728 × 10−9 4.3010746567 × 10−9 1.86× 10−9

4 4 1.72937852645569 × 10−5 1.72937852645567 × 10−5 1.7293785258 × 10−5 4.05 × 10−10

5 5 4.01481595546757 × 10−6 4.01481595546768 × 10−6 4.0148159516 × 10−6 9.71 × 10−10

6 6 9.65798420846838 × 10−7 9.65798420846792 × 10−7 9.6579842187 × 10−7 1.96× 10−9

C. The semi-analytical method for Teukolsky equation

Our main numerical technique in this work is a semi-analytical numerical method developed by Fujita and
Tagoshi[45, 46] which is based on the MST (Mano, Suzuki and Takasugi) analytical solutions of homogeneous Teukol-
sky equation[50, 51]. In the MST method, the homogeneous solutions of Teukolsky equation are expressed in terms of
two kinds of series of special functions. The first one consists of series of hypergeometric functions and is convergent
at the horizon

Rin
lmω = eiǫκx(−x)−s−i(ǫ+τ)/2(1− x)i(ǫ−τ)/2pin(x), (45)

where pin is expanded in a series of hypergeometric functions as

pin(x) =

∞∑

n=−∞

anF (n+ ν + 1− iτ,−n− ν − iτ ; 1− s− iǫ− iτ ;x), (46)

and x = ω(r+ − r)/ǫκ, ǫ = 2Mω,κ =
√
1− a2,τ = (ǫ − ma)/κ. The hypergeometric function F (α, β; γ;x) can be

found in mathematic handbooks.
The second one consists of series of Coulomb wave functions which is convergent at infinity. The homogeneous

solution of Teukolsky equation is

RC = z−1−s(1− ǫκ/z)−s−i(ǫ+τ)/2fν(z), (47)

where fν(z) is expressed in a series of Coulamb wave functions as

fν(z) =
∞∑

−∞

(−i)n (ν + 1 + s− iǫ)n
(ν + 1− s+ iǫ)n

anFn+ν(−is− ǫ, z), (48)

and z = ω(r− r−), (a)n = Γ(a+ n)/Γ(a), FN (η, z) is a Coulomb wave function. Notice that both Eqs.(46,48) involve
a parameter ν, the so-called renormalized angular momentum.
The key part of Fujita and Tagoshi’s method is searching the renormalized angular momentum numerically. When

harmonic frequency ω under some critical values, real solutions of ν can be found[45]. If ω exceeding these critical
values, complex solutions of ν can also be found[46]. But when ω becomes very large, it becomes very difficult to
search the solution of ν accurately. In this paper, we mainly employ the new method by Fujita and Tagoshi to solve
the Teukolsky equation because of its high accuracy and high efficiency, but when ω becomes large and difficult to
find ν accurately, we use the numerical integration method to evaluate the Teukolsky equation.
For checking our numerical code’s validity, in Table I and Table II, we list our results by two kind of methods and

the data published by Ref.[45]. We find our results are almost same with Fujita and Tagoshi’s, and also the accuracy
of our numerical integration of the Teukolsky equation is good.

IV. RELATIVISTIC DYNAMICS AND WAVEFORMS

The mass ratio of IMRI systems we adopted is 0.01, and the central massive body is a Kerr black hole . The initial
data (pr, pφ) for solving Eqs.(19-22) follows the so called post-circular initial conditions described in [19] and take
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TABLE II: The gravitational wave luminosity at horizon for r = 6M and a = 0.9 (The data labeled “Ref.[45]” are kindly
offered by Dr. Fujita).

l |m| Ref.[45] This paper Numerical integration Relative error
2 2 −3.98206695526010 × 10−6 −3.98206695525998 × 10−6 −3.9820668046 × 10−6 3.77 × 10−8

2 1 −7.10533640284950 × 10−8 −7.10533640284937 × 10−8 −7.1053351261 × 10−8 1.79 × 10−7

3 3 −1.17015834099274 × 10−7 −1.17015834099273 × 10−7 −1.1701585797 × 10−7 2.05 × 10−7

3 2 −2.54494163085054 × 10−9 −2.54494163085075 × 10−9 −2.5449398939 × 10−9 6.68 × 10−7

3 1 −1.41731814300288 × 10−10 −1.41731814300298 × 10−10 −1.4173182794 × 10−10 9.86 × 10−8

4 4 −4.26087026755638 × 10−9 −4.26087026755628 × 10−9 −4.2608720408 × 10−9 3.99 × 10−7

5 5 −1.66087471582563 × 10−10 −1.66087471582562 × 10−10 −1.6608748796 × 10−10 9.64 × 10−8

6 6 −6.66108480342866 × 10−12 −6.66108480342902 × 10−12 −6.6610834965 × 10−12 4.80 × 10−7

limit ν → 0,

pφ = Lz, (49)

pr = −[
F̂

dLz/dr
]ṫΣ/∆. (50)

We should point out here that usually we don’t take the limit ν → 0 (which was used in Refs.[33–35]) during the
dynamical evolution, we use the full EOB dynamics described in Eqs.(19-22). This makes us can contain the first
order conservative self-force of the small body in dynamics. We list our numerical algorithm here for clarity:
1. We calculate the quasi-circular data for the small body at time-step ti;
2. Use the orbital frequency from the step 1 to solve the Teukolsky equation in frequency domain by the numerical

methods we introduced in Sec.III up to lmax = 12;
3. Then get the flux and waveforms (Teukolsky-based) by summing over the multipoles at the time-step ti;
4. Calculate the dynamics of the small body for the time-step ti+1 by solving the EOB dynamics equations (19-22);
5. Iterate from the step 1.
The method of modeling back reaction and waveforms based on Teukolsky equation in frequency domain are quite

successful in quasi-periodic inspirals of extreme mass-ratio cases. It is a good standard for checking other methods.
For example, in Ref.[37], Yunes et al. used Teukolsky waveforms to construct more accurate EOB waveform models.
But while the mass ratio µ/M ∼ 10−2, the precision of Teukolsky energy fluxes and waveforms would decrease because
it is first order perturbation theory and also the subleading terms in the mass-ratio introduce conservative correction

is not included in Teukolsky equation. It is similar in Refs.[33–35] where they calculated f̂DIN by EOB analytical
radiation reaction in the ν → 0 limit and gravitational waves by the Regge-Wheeler-Zerilli perturbation equation.
Anyway, there are several reasons drive us choose the Teukolsky-based flux to replace the EOB analytical one to
calculate the radiation reaction in this work. One is that our Teukolsky-based flux does not include any low velocity

approximation comparing with the post-Newtonian expanded EOB flux. But we also notice that the f̂DIN based PN
resummed waveform extends effectively the PN waveform beyond the slow velocity approximation quite well [52].
One is that the Teukolsky-based flux can be calculated to arbitrary multipole (but actually because of a computation
limit, we compute to lmax = 12) against the EOB’s maximum l = 8 until now. The last one is that the black hole
absorbed term is naturally included in the Teukolsky-based energy flux.
There is also a problem to evolve the plunge orbit inside the Kerr or Schwarzschild ISCO with the adiabatic ap-

proximation frequency-domain code. The plunge orbit is unstable and do not have a well-defined frequency spectrum.
But as same as the EOB-based evolution of plunge orbit, we can just use the EOB dynamical equation (20) to define
the orbit frequency and calculate the harmonic frequency in Eq.(34). We think this is an alternative way to calculate
the energy flux in the Teukolsky frequency-domain frame. And the reliability of this definition of orbital frequency
was investigated in [35]. The key point is that the orbital evolution in this paper is based on the EOB dynamics
(19-22) but not the adiabatic approximation.

First, we compare the same situation in Fig.1 of Ref.[33] by our numerical algorithm with the 5PN resummed f̂DIN

in [34, 35]. For comparison, we take the ν → 0 limit as same as the Eqs.(2-6) of [34]. Our results are showed in Figure
1, in which both results are consistent very good at qualitative level. Due to the different methods for getting energy
fluxes, our results of orbital dynamics and waveforms are slightly different with the one by the 5PN resummed back
reaction at quantitative level. In details, before ISCO, during the inspiral, both results are almost the same, but in
plunge phase, a small but visible dephasing (about 0.16 radian) appears. Of course, this dephasing should be larger
if involving more orbit evolution.
Furthermore, for validating our result, we check the “convergence” of the l = m = 2 waveform modulus while

ν → 0. The result is displayed in Figure 2 and can clearly dedicate that the waveform we calculated has a good
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FIG. 1: Comparison of our method(solid line) with EOB (dashed line, the data are calculated by Dr. Bernuzzi). Left panel:
Transition from quasi-circular inspiral orbit to plunge from r0 = 7M and ν = 0.01. The dashed-dotted line circle is the ISCO
at rISCO = 6M and the dotted circle the horizon of black hole; Right panel: Orbital frequency Ωφ versus coordinate time.
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FIG. 2: “Convergence” of the waveform when ν → 0 for a = 0. The values of ν are 0.01, 0.001, 0.0001. t = 0 is time for the
maximum of the waveform modulus and spatial position is the light ring at r = 3M for each value of ν.

convergence. We think that this good converging trend together with the good consistency in Figure 1 gives a support
to our theoretical idea which combines EOB dynamics with the Teukolsky perturbation method in the intermediate
mass-ratio inspiral and plunge.
Now, as an application, we show the orbits of the small object inspiralling into Kerr black holes with different spin:

a = −0.9, 0.7. We use the full EOB dynamics equations (19-22) without the ν → 0 approximation. This makes us
can contain the conservative mass-ratio corrections. When a 6= 0, ν 6= 0, it is no possible to write out an analytical
expression for the angular momentum. So we use Brent’s algorithm[53] to search Lz numerically with a relative
error less than 10−13. For the Kerr black holes, because of the so-called frame-dragging effect, the radius of ISCO is
smaller(a > 0) or bigger(a < 0) than the Schwarzschild case. For example, the extreme Kerr black hole, a = ±1, the
ISCO locates at r = 1M and r = 9M respectively. And for a = 0.7, − 0.9, rISCO = 3.39313, 8.71735 respectively.
For this reason, when a < 0 (retrograde orbit), the small body plunges faster into the black hole. At the same

time, when a > 0 (prograde orbit), the small body spirals more cycles before plunge. These phenomena are clearly
displayed in Fig.3.
And also the waveforms are modified by different values of spin of Kerr black holes. As an example, we show the

waveforms of a = −0.9, 0.7 cases in Figure 4. After passing the light ring, based on the analysis in Ref.[35], the
merge actually has started and gone into ringdown phase, the energy flux and waveform cannot be calculated by the
frequency-domain method but can be connected by a quasi-normal mode or time-domain Teukolsky solution. For this
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reason, we stop the evolution just after the small object passing the light ring.

V. CONCLUSIONS AND DISCUSSION

Previous works on IMRIs dynamics through the EOB method are based on approximated analytical waveforms.
We propose an alternative method to set the back reaction term for the EOB dynamics via numerically calculated
energy flux directly. We have presented our numerical results based on the EOB dynamics and the frequency-domain
Teukolsky flux in this paper. This is the first try to use the frequecy-domain Teukolsky frame in the plunge phase
of IMRIs by the help of the EOB dynamics. Our results are consistent to the previous results using the analytical
energy fluxes of post-Newtonian approximation.
And the results shown here are reasonable. By comparing with the full EOB evolution in deformed Schwarzschild

space-time, a quite good coincidence before ISCO gives a support for applying the Teukolsky equation up to mass-ratio
0.01. After ISCO, the plunge stage, a small difference comes out due to two different energy fluxes used.
Since there is few results of post-Newtonian waveforms on elliptic, and even non-equatorial orbits, it’s not easy to

generalize the previous EOB dynamics works to these systems. In principle, our numerical energy-flux method is not
restricted by this. The radial and polar frequencies can be obtained by evolving an “imaginary” geodesic orbit at
every step. The “imaginary” geodesic orbit is the solution of Eqs.(19)-(22) but F̂ = 0 in (22). This solution involves
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ordinary differential equations with only few variables, so the computation time is negligible compared with the total
evolution time. Of course, when we try to expand our method to the elliptic, and even non-equatorial orbits, the
numerical cost will be more high. However, for EMRIs, there were several works which evolved generic orbits with
solving the Teukolsky equation [10, 12, 16, 54]. For IMRIs, we can afford the numerical cost even for evolving a few
tens of orbits. And more, we can generalize our analysis to generic spinning objects moving along generic elliptic, and
even non-equatorial orbits. These would be our future works.
The adiabatic approximation works well in inspiral with extreme mass-ratio limit, but is violated in plunge stage.

At the same time, the EOB dynamics can be used in both inspiral and plunge evolution. And then the energy fluxes
also are calculated by the EOB-PN expanded waveforms usually. In this traditional method, the EOB fluxes are
based on post-Newtonian approximation, and losses accuracy in the high relativistic region. What we do in this paper
is, in the EOB dynamics frame, we use Teukolsky-based energy fluxes and waveforms to replace the EOB ones. In
other word, we adopt the frequency-domain Teukolsky-based energy fluxes and waveforms but abandon the adiabatic
approximation; we employ the EOB dynamics to evolve the binary systems but do not use the EOB energy fluxes for
back reaction.
This EOB plus Teukolsky frame we develop in this work can provide an alternative way to research the gravitational

waves from IMRIs. The dynamical evolution and waveforms for several different spinning black holes are given in the
above sections. But more detailed analysis about this EOB plus Teukolsky frame should be done farther in future,
and more interesting results would be obtained then.
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[15] T. Hinderer and É.É. Flanagan, Phys. Rev. D 78, 064028 (2008).
[16] R. Fujita, W. Hikida and H. Tagoshi, Prog. Theor. Phys. 121, 843 (2009).
[17] A. Buonanno, and T. Damour, Phys. Rev. D 59, 084006 (1999).
[18] A. Buonanno, and T. Damour, Phys. Rev. D 62, 064015 (2000).
[19] T. Damour, P. Jaranowski, and G. Schafer, Phys. Rev. D 62, 084011 (2000).
[20] T. Damour, Phys. Rev. D 64, 124013 (2001).
[21] A. Buonanno, Y. Chen, and T. Damour, Phys. Rev. D 74, 104005 (2006).
[22] T. Damour, and A. Nagar, arXiv:0906.1769.
[23] Y. Pan, A. Buonanno, R. Fujita, E. Racine, and H. Tagoshi, arXiv:1006.0431
[24] A. Buonanno, Y. Pan, J.G. Baker, J. Centrella, B.J. Kelly, S.T. McWilliams, and J.R. van Meter, Phys. Rev. D 76, 104049

(2007).
[25] T. Damour, A. Nagar, Phys. Rev. D 77, 024043 (2008).
[26] T. Damour, A. Nagar, E.N. Dorband, D. Pollney, and L. Rezzolla, Phys. Rev. D 77, 084017 (2008).
[27] T. Damour, A. Nagar, M. Hannam, S. Husa, and B. Brugmann, Phys. Rev. D 78, 044039 (2008).
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