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2 Brief description

One of the most important metrics in general relativity is the Kerr-Newman
solution that describes the gravitational and electromagnetic fields of a rotat-
ing charged mass. For astrophysical purposes, however, it is necessary to take
into account the effects due to the moment of inertia of the object. To attack
this problem we have derived exact solutions of Einstein-Maxwell equations
which posses an infinite set of gravitational and electromagnetic multipole
moments.

To study the physical relevance of such solutions in the context of relativis-
tic astrophysics we analyze the particular case of a rotating mass with an ar-
bitrary quadrupole moment. The investigation of the motion of test particles
in the corresponding gravitational field shows that the quadrupole drasti-
cally affects the structure of spacetime. In particular, effects associated with
repulsive gravity take place due to the presence of naked singularities. We
perform an analytical study of circular motion around naked singularities in
the specific case of the Reissner-Nordström and he Kerr spacetime. To study
the physical effects of repulsive gravity in an invariant manner we propose
to use the eigenvalues of the curvature tensor which are scalar quantities and
provide physically reasonable results in the case of naked singularities with
black hole counterparts as well as in the case of naked singularities generated
by higher multipole moments.

We study the problem of matching stationary and axisymmetric exterior
and interior solutions, and propose an invariant approach based upon the
use of curvature invariants. We study the problem of the interior solution
for a rotating mass with quadrupole moment. In particular, we show that
the approximate interior Hartle-Thorne solution can be matched with an ap-
proximate exterior solution which is a particular case of the exact Mashhoon–
Quevedo exterior solution. The quadrupole parameter is interpreted as an
additional degree of freedom that can be used to attack the problem of find-
ing physically reasonable interior solutions. We study the Zipoy-Voorhees
static solution and find a particular interior counterpart which is described
by a static perfect fluid with quadrupole moment.
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3 Introduction

It is hard to overemphasize the importance of the Kerr geometry not only
for general relativity itself, but also for the very fundamentals of physics.
It assumes this position as being the most physically relevant rotating gen-
eralization of the static Schwarzschild geometry. Its charged counterpart,
the Kerr-Newman solution, representing the exterior gravitational and elec-
tromagnetic fields of a charged rotating object, is an exact solution of the
Einstein-Maxwell equations.

Its line element in Boyer–Lindquist coordinates can be written as

ds2 =
r2 − 2Mr + a2 + Q2

r2 + a2 cos2 θ
(dt − a sin2 θdϕ)2

− sin2 θ

r2 + a2 cos2 θ
[(r2 + a2)dϕ − adt]2

− r2 + a2 cos2 θ

r2 − 2Mr + a2 + Q2
dr2 − (r2 + a2 cos2 θ)dθ2 , (3.0.1)

where M is the total mass of the object, a = J/M is the specific angular mo-
mentum, and Q is the electric charge. In this particular coordinate system,
the metric functions do not depend on the coordinates t and φ, indicating the
existence of two Killing vector fields ξ I = ∂t and ξ I I = ∂ϕ which represent
the properties of stationarity and axial symmetry, respectively.

An important characteristic of this solution is that the source of gravity is
surrounded by two horizons situated at a distance

r± = M ±
√

M2 − a2 − Q2 (3.0.2)

from the origin of coordinates. Inside the interior horizon, r−, a ring singular-
ity is present which, however, cannot be observed by any observer situated
outside the exterior horizon. If the condition M2 < a2 + Q2 is satisfied, no
horizons are present and the Kerr–Newman spacetime represents the exterior
field of a naked singularity.

Despite of its fundamental importance in general relativity, and its theo-
retical and mathematical interest, this solution has not been especially useful
for describing astrophysical phenomena, first of all, because observed astro-
physical objects do not possess an appreciable net electric charge. Further-
more, the limiting Kerr metric takes into account the mass and the rotation,
but does not consider the moment of inertia of the object. For astrophysi-
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3 Introduction

cal applications it is, therefore, necessary to use more general solutions with
higher multipole moments which are due not only to the rotation of the body
but also to its shape. This means that even in the limiting case of a static
spacetime, a solution is needed that takes into account possible deviations
from spherically symmetry.

708



4 The general static vacuum
solution

In general relativity, stationary axisymmetric solutions of Einstein’s equa-
tions [1] play a crucial role for the description of the gravitational field of
astrophysical objects. In particular, the black hole solutions and their gener-
alizations that include Maxwell fields are contained within this class.

This type of exact solutions has been the subject of intensive research dur-
ing the past few decades. In particular, the number of know exact solutions
drastically increased after Ernst [2] discovered an elegant representation of
the field equations that made it possible to search for their symmetries. These
studies lead finally to the development of solution generating techniques [1]
which allow us to find new solutions, starting from a given seed solution. In
particular, solutions with an arbitrary number of multipole moments for the
mass and angular momentum were derived in [3] and used to describe the
gravitational field of rotating axially symmetric distributions of mass.

The first analysis of stationary axially symmetric gravitational fields was
carried out by Weyl [4] in 1917, soon after the formulation of general rela-
tivity. In particular, Weyl discovered that in the static limit the main part of
the vacuum field equations reduces to a single linear differential equation.
The corresponding general solution can be written in cylindrical coordinates
as an infinite sum with arbitrary constant coefficients. A particular choice of
the coefficients leads to the subset of asymptotically flat solutions which is
the most interesting from a physical point of view. In this section we review
the main properties of stationary axisymmetric gravitational fields. In par-
ticular, we show explicitly that the main field equations in vacuum can be
represented as the equations of a nonlinear sigma model in which the base
space is the 4-dimensional spacetime and the target space is a 2-dimensional
conformally Euclidean space.

4.1 Line element and field equations

Although there exist in the literature many suitable coordinate systems, sta-
tionary axisymmetric gravitational fields are usually described in cylindric
coordinates (t, ρ, z, ϕ). Stationarity implies that t can be chosen as the time
coordinate and the metric does not depend on time, i.e. ∂gµν/∂t = 0. Con-

sequently, the corresponding timelike Killing vector has the components δ
µ
t .
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4 The general static vacuum solution

A second Killing vector field is associated to the axial symmetry with respect
to the axis ρ = 0. Then, choosing ϕ as the azimuthal angle, the metric satis-
fies the conditions ∂gµν/∂ϕ = 0, and the components of the corresponding

spacelike Killing vector are δ
µ
ϕ.

Using further the properties of stationarity and axial symmetry, together
with the vacuum field equations, for a general metric of the form gµν =
gµν(ρ, z), it is possible to show that the most general line element for this type
of gravitational fields can be written in the Weyl-Lewis-Papapetrou form as
[4, 5, 6]

ds2 = f (dt − ωdϕ)2 − f−1
[

e2γ(dρ2 + dz2) + ρ2dϕ2
]

, (4.1.1)

where f , ω and γ are functions of ρ and z, only. After some rearrangements
which include the introduction of a new function Ω = Ω(ρ, z) by means of

ρ∂ρΩ = f 2∂zω , ρ∂zΩ = − f 2∂ρω , (4.1.2)

the vacuum field equations Rµν = 0 can be shown to be equivalent to the
following set of partial differential equations

1

ρ
∂ρ(ρ∂ρ f ) + ∂2

z f +
1

f
[(∂ρΩ)2 + (∂zΩ)2 − (∂ρ f )2 − (∂z f )2] = 0 , (4.1.3)

1

ρ
∂ρ(ρ∂ρΩ) + ∂2

zΩ − 2

f

(
∂ρ f ∂ρΩ + ∂z f ∂zΩ

)
= 0 , (4.1.4)

∂ργ =
ρ

4 f 2

[
(∂ρ f )2 + (∂ρΩ)2 − (∂z f )2 − (∂zΩ)2

]
, (4.1.5)

∂zγ =
ρ

2 f 2

(
∂ρ f ∂z f + ∂ρΩ ∂zΩ

)
. (4.1.6)

It is clear that the field equations for γ can be integrated by quadratures,
once f and Ω are known. For this reason, the equations (4.1.3) and (4.1.4)
for f and Ω are usually considered as the main field equations for stationary
axisymmetric vacuum gravitational fields. In the following subsections we
will focus on the analysis of the main field equations, only. It is interesting
to mention that this set of equations can be geometrically interpreted in the
context of nonlinear sigma models [7].

Let us consider the special case of static axisymmetric fields. This corre-
sponds to metrics which, apart from being axially symmetric and indepen-
dent of the time coordinate, are invariant with respect to the transformation
ϕ → −ϕ (i.e. rotations with respect to the axis of symmetry are not allowed).
Consequently, the corresponding line element is given by (4.1.1) with ω = 0,
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4.2 Static solution

and the field equations can be written as

∂2
ρψ +

1

ρ
∂ρψ + ∂2

zψ = 0 , f = exp(2ψ) , (4.1.7)

∂ργ = ρ
[
(∂ρψ)2 − (∂zψ)2

]
, ∂zγ = 2ρ∂ρψ ∂zψ . (4.1.8)

We see that the main field equation (4.1.7) corresponds to the linear Laplace
equation for the metric function ψ.

4.2 Static solution

The general solution of Laplace’s equation is known and, if we demand addi-
tionally asymptotic flatness, we obtain the Weyl solution which can be writ-
ten as [4, 1]

ψ =
∞

∑
n=0

an

(ρ2 + z2)
n+1

2

Pn(cos θ) , cos θ =
z√

ρ2 + z2
, (4.2.1)

where an (n = 0, 1, ...) are arbitrary constants, and Pn(cos θ) represents the
Legendre polynomials of degree n. The expression for the metric function γ
can be calculated by quadratures by using the set of first order differential
equations (4.1.8). Then

γ = −
∞

∑
n,m=0

anam(n + 1)(m + 1)

(n + m + 2)(ρ2 + z2)
n+m+2

2

(PnPm − Pn+1Pm+1) . (4.2.2)

Since this is the most general static, axisymmetric, asymptotically flat vac-
uum solution, it must contain all known solution of this class. In particular,
one of the most interesting special solutions which is Schwarzschild’s spher-
ically symmetric black hole spacetime must be contained in this class. To see
this, we must choose the constants an in such a way that the infinite sum
(4.2.1) converges to the Schwarzschild solution in cylindric coordinates. But,
or course, this representation is not the most appropriate to analyze the inter-
esting physical properties of Schwarzchild’s metric.

In fact, it turns out that to investigate the properties of solutions with mul-
tipole moments it is more convenient to use prolate spheroidal coordinates
(t, x, y, ϕ) in which the line element can be written as

ds2 = f dt2 − σ2

f

[
e2γ(x2 − y2)

(
dx2

x2 − 1
+

dy2

1 − y2

)
+ (x2 − 1)(1 − y2)dϕ2

]
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4 The general static vacuum solution

where

x =
r+ + r−

2σ
, (x2 ≥ 1), y =

r+ − r−
2σ

, (y2 ≤ 1) (4.2.3)

r2
± = ρ2 + (z ± σ)2 , σ = const , (4.2.4)

and the metric functions are f , ω, and γ depend on x and y, only. In this
coordinate system, the general static solution which is also asymptotically
flat can be expressed as

f = exp(2ψ) , ψ =
∞

∑
n=0

(−1)n+1qnPn(y)Qn(x) , qn = const

where Pn(y) are the Legendre polynomials, and Qn(x) are the Legendre func-
tions of second kind. In particular,

P0 = 1, P1 = y, P2 =
1

2
(3y2 − 1) , ...

Q0 =
1

2
ln

x + 1

x − 1
, Q1 =

1

2
x ln

x + 1

x − 1
− 1 ,

Q2 =
1

2
(3x2 − 1) ln

x + 1

x − 1
− 3

2
x , ...

The corresponding function γ can be calculated by quadratures and its gen-
eral expression has been explicitly derived in [8]. The most important special
cases contained in this general solution are the Schwarzschild metric

ψ = −q0P0(y)Q0(x) , γ =
1

2
ln

x2 − 1

x2 − y2
,

and the Erez-Rosen metric [9]

ψ = −q0P0(y)Q0(x)− q2P2(y)Q2(x) , γ =
1

2
ln

x2 − 1

x2 − y2
+ ....

In the last case, the constant parameter q2 turns out to determine the quadrupole
moment. In general, the constants qn represent an infinite set of parameters
that determines an infinite set of mass multipole moments.
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5 Stationary generalization

The solution generating techniques [12] can be applied, in particular, to any
static seed solution in order to obtain the corresponding stationary general-
ization. One of the most powerful techniques is the inverse method (ISM)
developed by Belinski and Zakharov [13]. We used a particular case of the
ISM, which is known as the Hoenselaers–Kinnersley-Xanthopoulos (HKX)
transformation to derive the stationary generalization of the general static
solution in prolate spheroidal coordinates.

5.1 Ernst representation

In the general stationary case (ω 6= 0) with line element

ds2 = f (dt − ωdϕ)2

− σ2

f

[
e2γ(x2 − y2)

(
dx2

x2 − 1
+

dy2

1 − y2

)
+ (x2 − 1)(1 − y2)dϕ2

]

it is useful to introduce the the Ernst potentials

E = f + iΩ , ξ =
1 − E

1 + E
,

where the function Ω is now determined by the equations

σ(x2 − 1)Ωx = f 2ωy , σ(1 − y2)Ωy = − f 2ωx .

Then, the main field equations can be represented in a compact and symmet-
ric form:

(ξξ∗ − 1)
{
[(x2 − 1)ξx ]x + [(1 − y2)ξy]y

}
= 2ξ∗[(x2 − 1)ξ2

x + (1 − y2)ξ2
y] .

This equation is invariant with respect to the transformation x ↔ y. Then,
since the particular solution

ξ =
1

x
→ Ω = 0 → ω = 0 → γ =

1

2
ln

x2 − 1

x2 − y2
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5 Stationary generalization

represents the Schwarzschild spacetime, the choice ξ−1 = y is also an exact
solution. Furthermore, if we take the linear combination ξ−1 = c1x + c2y and
introduce it into the field equation, we obtain the new solution

ξ−1 =
σ

M
x + i

a

M
y , σ =

√
M2 − a2 ,

which corresponds to the Kerr metric in prolate spheroidal coordinates.
In the case of the Einstein-Maxwell theory, the main field equations can be

expressed as

(ξξ∗ − FF
∗ − 1)∇2ξ = 2(ξ∗∇ξ − F

∗∇F)∇ξ ,

(ξξ∗ − FF
∗ − 1)∇2

F = 2(ξ∗∇ξ − F
∗∇F)∇F

where ∇ represents the gradient operator in prolate spheroidal coordinates.
Moreover, the gravitational potential ξ and the electromagnetic F Ernst po-
tential are defined as

ξ =
1 − f − iΩ

1 + f + iΩ
, F = 2

Φ

1 + f + iΩ
.

The potential Φ can be shown to be determined uniquely by the electromag-
netic potentials At and Aϕ One can show that if ξ0 is a vacuum solution, then
the new potential

ξ = ξ0

√
1 − e2

represents a solution of the Einstein-Maxwell equations with effective elec-
tric charge e. This transformation is known in the literature as the Harrison
transformation [10]. Accordingly, the Kerr–Newman solution in this repre-
sentation acquires the simple form

ξ =

√
1 − e2

σ
M x + i a

M y
, e =

Q

M
, σ =

√
M2 − a2 − Q2 .

In this way, it is very easy to generalize any vacuum solution to include the
case of electric charge. More general transformations of this type can be used
in order to generate solutions with any desired set of gravitational and elec-
tromagnetic multipole moments [11].

5.2 Representation as a nonlinear sigma model

Consider two (pseudo)-Riemannian manifolds (M, γ) and (N, G) of dimen-
sion m and n, respectively. Let M be coordinatized by xa, and N by Xµ, so
that the metrics on M and N can be, in general, smooth functions of the cor-
responding coordinates, i.e., γ = γ(x) and G = G(X). A harmonic map is a
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5.2 Representation as a nonlinear sigma model

smooth map X : M → N, or in coordinates X : x 7−→ X so that X becomes
a function of x, and the X’s satisfy the motion equations following from the
action [14]

S =
∫

dmx
√
|γ| γab(x) ∂aXµ ∂bXν Gµν(X) , (5.2.1)

which sometimes is called the “energy” of the harmonic map X. The straight-
forward variation of S with respect to Xµ leads to the motion equations

1√
|γ|

∂b

(√
|γ|γab∂aXµ

)
+ Γ

µ
νλ γab ∂aXν ∂bXλ = 0 , (5.2.2)

where Γ
µ
νλ are the Christoffel symbols associated to the metric Gµν of the

target space N. If Gµν is a flat metric, one can choose Cartesian-like coor-
dinates such that Gµν = ηµν = diag(±1, ...,±1), the motion equations be-
come linear, and the corresponding sigma model is linear. This is exactly
the case of a bosonic string on a flat background in which the base space is
the 2-dimensional string world-sheet. In this case the action (5.2.1) is usually
referred to as the Polyakov action [16].

Consider now the case in which the base space M is a stationary axisym-
metric spacetime. Then, γab, a, b = 0, ..., 3, can be chosen as the Weyl-Lewis-
Papapetrou metric (4.1.1), i.e.

γab =




f 0 0 − f ω

0 − f−1e2k 0 0

0 0 − f−1e2k 0
− f ω 0 0 f ω2 − ρ2 f−1


 . (5.2.3)

Let the target space N be 2-dimensional with metric Gµν = (1/2) f−2δµν,
µ, ν = 1, 2, and let the coordinates on N be Xµ = ( f , Ω). Then, it is straight-
forward to show that the action (5.2.1) becomes

S =
∫

L dtdϕdρdz , L =
ρ

2 f 2

[
(∂ρ f )2 + (∂z f )2 + (∂ρΩ)2 + (∂zΩ)2

]
,

(5.2.4)
and the corresponding motion equations (5.2.2) are identical to the main field
equations (4.1.3) and (4.1.4).

Notice that the field equations can also be obtained from (5.2.4) by a direct
variation with respect to f and Ω. This interesting result was obtained orig-
inally by Ernst [2], and is the starting point of what today is known as the
Ernst representation of the field equations.

The above result shows that stationary axisymmetric gravitational fields
can be described as a (4 → 2)−nonlinear harmonic map, where the base
space is the spacetime of the gravitational field and the target space corre-
sponds to a 2-dimensional conformally Euclidean space. A further analy-
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5 Stationary generalization

sis of the target space shows that it can be interpreted as the quotient space
SL(2, R)/SO(2) [15], and the Lagrangian (5.2.4) can be written explicitly [17]
in terms of the generators of the Lie group SL(2, R). Harmonic maps in which
the target space is a quotient space are usually known as nonlinear sigma
models [14].

The form of the Lagrangian (5.2.4) with two gravitational field variables,
f and Ω, depending on two coordinates, ρ and z, suggests a representation
as a harmonic map with a 2-dimensional base space. In string theory, this
is an important fact that allows one to use the conformal invariance of the
base space metric to find an adequate representation for the set of classical
solutions. This, in turn, facilitates the application of the canonical quantiza-
tion procedure. Unfortunately, this is not possible for the Lagrangian (5.2.4).
Indeed, if we consider γab as a 2-dimensional metric that depends on the pa-
rameters ρ and z, the diagonal form of the Lagrangian (5.2.4) implies that√
|γ|γab = δab. Clearly, this choice is not compatible with the factor ρ in front

of the Lagrangian. Therefore, the reduced gravitational Lagrangian (5.2.4)
cannot be interpreted as corresponding to a (2 → n)-harmonic map. Never-
theless, we will show in the next section that a modification of the definition
of harmonic maps allows us to “absorb” the unpleasant factor ρ in the met-
ric of the target space, and to use all the advantages of a 2-dimensional base
space.

Notice that the representation of stationary fields as a nonlinear sigma
model becomes degenerate in the limiting case of static fields. Indeed, the
underlying geometric structure of the SL(2, R)/SO(2) nonlinear sigma mod-
els requires that the target space be 2-dimensional, a condition which is not
satisfied by static fields. We will see below that by using a dimensional exten-
sion of generalized sigma models, it will be possible to treat the special static
case, without affecting the underlying geometric structure.

The analysis performed in this section for stationary axisymmetric fields
can be generalized to include any gravitational field containing two com-
muting Killing vector fields [1]. This is due to the fact that for this class of
gravitational fields it is always possible to find the corresponding Ernst rep-
resentation in which the Lagrangian contains only two gravitational variables
which depend on only two spacetime coordinates.

5.3 Representation as a generalized harmonic map

Consider two (pseudo-)Riemannian manifolds (M, γ) and (N, G) of dimen-
sion m and n, respectively. Let xa and Xµ be coordinates on M and N, re-
spectively. This coordinatization implies that in general the metrics γ and
G become functions of the corresponding coordinates. Let us assume that
not only γ but also G can explicitly depend on the coordinates xa, i.e. let
γ = γ(x) and G = G(X, x). This simple assumption is the main aspect of our
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5.3 Representation as a generalized harmonic map

generalization which, as we will see, lead to new and nontrivial results.

A smooth map X : M → N will be called an (m → n)−generalized har-
monic map if it satisfies the Euler-Lagrange equations

1√
|γ|

∂b

(√
|γ|γab∂aXµ

)
+ Γ

µ
νλ γab ∂aXν∂bXλ + Gµλγab ∂aXν ∂bGλν = 0 ,

(5.3.1)
which follow from the variation of the generalized action

S =
∫

dmx
√
|γ| γab(x) ∂a Xµ∂bXνGµν(X, x) , (5.3.2)

with respect to the fields Xµ. Here the Christoffel symbols, determined by
the metric Gµν, are calculated in the standard manner, without considering
the explicit dependence on x. Notice that the new ingredient in this general-
ized definition of harmonic maps, i.e., the term Gµν(X, x) in the Lagrangian
density implies that we are taking into account the “interaction” between the
base space M and the target space N. This interaction leads to an extra term
in the motion equations, as can be seen in (5.3.1). It turns out that this inter-
action is the result of the effective presence of the gravitational field.

Notice that the limiting case of generalized linear harmonic maps is much
more complicated than in the standard case. Indeed, for the motion equations
(5.3.1) to become linear it is necessary that the conditions

γab(Γ
µ
νλ ∂bXλ + Gµλ ∂bGλν)∂aXν = 0 , (5.3.3)

be satisfied. One could search for a solution in which each term vanishes sep-
arately. The choice of a (pseudo-)Euclidean target metric Gµν = ηµν, which

would imply Γ
µ
νλ = 0, is not allowed, because it would contradict the as-

sumption ∂bGµν 6= 0. Nevertheless, a flat background metric in curvilinear

coordinates could be chosen such that the assumption Gµλ∂bGµν = 0 is ful-

filled, but in this case Γ
µ
νλ 6= 0 and (5.3.3) cannot be satisfied. In the general

case of a curved target metric, conditions (5.3.3) represent a system of m first
order nonlinear partial differential equations for Gµν. Solutions to this system
would represent linear generalized harmonic maps. The complexity of this
system suggests that this special type of maps is not common.

As we mentioned before, the generalized action (5.3.2) includes an inter-
action between the base space N and the target space M, reflected on the
fact that Gµν depends explicitly on the coordinates of the base space. Clearly,
this interaction must affect the conservation laws of the physical systems we
attempt to describe by means of generalized harmonic maps. To see this ex-
plicitly we calculate the covariant derivative of the generalized Lagrangian
density

L =
√
|γ| γab(x) ∂a Xµ∂bXνGµν(X, x) , (5.3.4)
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and replace in the result the corresponding motion equations (5.3.1). Then,
the final result can be written as

∇bT̃ b
a = − ∂L

∂xa
(5.3.5)

where T̃ b
a represents the canonical energy-momentum tensor

T̃ b
a =

∂L

∂(∂bXµ)
(∂aXµ)− δb

aL = 2
√

γGµν

(
γbc∂aXµ ∂cXν − 1

2
δb

aγcd∂cXµ ∂dXν

)
.

(5.3.6)
The standard conservation law is recovered only when the Lagrangian does
not depend explicitly on the coordinates of the base space. Even if we choose
a flat base space γab = ηab, the explicit dependence of the metric of the target
space Gµν(X, x) on x generates a term that violates the standard conservation
law. This term is due to the interaction between the base space and the target
space which, consequently, is one of the main characteristics of the general-
ized harmonic maps introduced in this work.

An alternative and more general definition of the energy-momentum ten-
sor is by means of the variation of the Lagrangian density with respect to the
metric of the base space, i.e.

Tab =
δL

δγab
. (5.3.7)

A straightforward computation shows that for the action under consideration

here we have that T̃ab = 2Tab so that the generalized conservation law (5.3.5)
can be written as

∇bT b
a +

1

2

∂L

∂xa
= 0 . (5.3.8)

For a given metric on the base space, this represents in general a system of m
differential equations for the “fields” Xµ which must be satisfied “on-shell”.

If the base space is 2-dimensional, we can use a reparametrization of x to
choose a conformally flat metric, and the invariance of the Lagrangian den-
sity under arbitrary Weyl transformations to show that the energy-momentum
tensor is traceless, T a

a = 0.

In Section 5.1 we described stationary, axially symmetric, gravitational fields
as a (4 → 2)−nonlinear sigma model. There it was pointed out the conve-
nience of having a 2-dimensional base space in analogy with string theory.
Now we will show that this can be done by using the generalized harmonic
maps defined above.

Consider a (2 → 2)−generalized harmonic map. Let xa = (ρ, z) be the
coordinates on the base space M, and Xµ = ( f , Ω) the coordinates on the
target space N. In the base space we choose a flat metric and in the target
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5.3 Representation as a generalized harmonic map

space a conformally flat metric, i.e.

γab = δab and Gµν =
ρ

2 f 2
δµν (a, b = 1, 2; µ, ν = 1, 2). (5.3.9)

A straightforward computation shows that the generalized Lagrangian (5.3.4)
coincides with the Lagrangian (5.2.4) for stationary axisymetric fields, and
that the equations of motion (5.3.1) generate the main field equations (4.1.3)
and (4.1.4).

For the sake of completeness we calculate the components of the energy-
momentum tensor Tab = δL/δγab. Then

Tρρ = −Tzz =
ρ

4 f 2

[
(∂ρ f )2 + (∂ρΩ)2 − (∂z f )2 − (∂zΩ)2

]
, (5.3.10)

Tρz =
ρ

2 f 2

(
∂ρ f ∂z f + ∂ρΩ ∂zΩ

)
. (5.3.11)

This tensor is traceless due to the fact that the base space is 2-dimensional. It
satisfies the generalized conservation law (5.3.8) on-shell:

dTρρ

dρ
+

dTρz

dz
+

1

2

∂L

∂ρ
= 0 , (5.3.12)

dTρz

dρ
− dTρρ

dz
= 0 . (5.3.13)

Incidentally, the last equation coincides with the integrability condition for
the metric function k, which is identically satisfied by virtue of the main field
equations. In fact, as can be seen from Eqs.(4.1.5,4.1.6) and (5.3.10,5.3.11),
the components of the energy-momentum tensor satisfy the relationships
Tρρ = ∂ρk and Tρz = ∂zk, so that the conservation law (5.3.13) becomes an
identity. Although we have eliminated from the starting Lagrangian (5.2.4)
the variable k by applying a Legendre transformation on the Einstein-Hilbert
Lagrangian (see [17] for details) for this type of gravitational fields, the for-
malism of generalized harmonic maps seems to retain the information about
k at the level of the generalized conservation law.

The above results show that stationary axisymmetric spacetimes can be
represented as a (2 → 2)−generalized harmonic map with metrics given as
in (5.3.9). It is also possible to interpret the generalized harmonic map given
above as a generalized string model. Although the metric of the base space
M is Euclidean, we can apply a Wick rotation τ = iρ to obtain a Minkowski-
like structure on M. Then, M represents the world-sheet of a bosonic string
in which τ is measures the time and z is the parameter along the string. The
string is “embedded” in the target space N whose metric is conformally flat
and explicitly depends on the time parameter τ. We will see in the next sec-
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tion that this embedding becomes more plausible when the target space is
subject to a dimensional extension. In the present example, it is necessary to
apply a Wick rotation in order to interpret the base space as a string world-
sheet. This is due to the fact that both coordinates ρ and z are spatial coordi-
nates. However, this can be avoided by considering other classes of gravita-
tional fields with timelike Killing vector fields; examples will be given below.

The most studied solutions belonging to the class of stationary axisymmet-
ric fields are the asymptotically flat solutions. Asymptotic flatness imposes
conditions on the metric functions which in the cylindrical coordinates used
here can be formulated in the form

lim
xa→∞

f = 1 + O

(
1

xa

)
, lim

xa→∞
ω = c1 + O

(
1

xa

)
, lim

xa→∞
Ω = O

(
1

xa

)

(5.3.14)
where c1 is an arbitrary real constant which can be set to zero by appropri-
ately choosing the angular coordinate ϕ. If we choose the domain of the
spatial coordinates as ρ ∈ [0, ∞) and z ∈ (−∞,+∞), from the asymptotic
flatness conditions it follows that the coordinates of the target space N satisfy
the boundary conditions

Ẋµ(ρ,−∞) = 0 = Ẋµ(ρ, ∞) , X′µ(ρ,−∞) = 0 = X′µ(ρ, ∞) (5.3.15)

where the dot stands for a derivative with respect to ρ and the prime rep-
resents derivation with respect to z. These relationships are known in string
theory [16] as the Dirichlet and Neumann boundary conditions for open strings,
respectively, with the extreme points situated at infinity. We thus conclude
that if we assume ρ as a “time” parameter for stationary axisymmetric grav-
itational fields, an asymptotically flat solution corresponds to an open string
with endpoints attached to D−branes situated at plus and minus infinity in
the z−direction.

5.4 Dimensional extension

In order to further analyze the analogy between gravitational fields and bosonic
string models, we perform an arbitrary dimensional extension of the target
space N, and study the conditions under which this dimensional extension
does not affect the field equations of the gravitational field. Consider an
(m → D)−generalized harmonic map. As before we denote by {xa} the
coordinates on M. Let {Xµ, Xα} with µ = 1, 2 and α = 3, 4, ..., D be the
coordinates on N. The metric structure on M is again γ = γ(x), whereas
the metric on N can in general depend on all coordinates of M and N, i.e.
G = G(Xµ, Xα, xa). The general structure of the corresponding field equa-
tions is as given in (5.3.1). They can be divided into one set of equations for
Xµ and one set of equations for Xα. According to the results of the last sec-
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tion, the class of gravitational fields under consideration can be represented
as a (2 → 2)−generalized harmonic map so that we can assume that the
main gravitational variables are contained in the coordinates Xµ of the target
space. Then, the gravitational sector of the target space will be contained in
the components Gµν (µ, ν = 1, 2) of the metric, whereas the components Gαβ

(α, β = 3, 4, ..., D) represent the sector of the dimensional extension.

Clearly, the set of differential equations for Xµ also contains the variables
Xα and its derivatives ∂aXα. For the gravitational field equations to remain
unaffected by this dimensional extension we demand the vanishing of all the
terms containing Xα and its derivatives in the equations for Xµ. It is easy to
show that this can be achieved by imposing the conditions

Gµα = 0 ,
∂Gµν

∂Xα
= 0 ,

∂Gαβ

∂Xµ = 0 . (5.4.1)

That is to say that the gravitational sector must remain completely invariant
under a dimensional extension, and the additional sector cannot depend on
the gravitational variables, i.e., Gαβ = Gαβ(X

γ, xa), γ = 3, 4, ..., D. Further-
more, the variables Xα must satisfy the differential equations

1√
|γ|

∂b

(√
|γ|γab∂aXα

)
+ Γα

βγ γab ∂aXβ∂bXγ + Gαβγab ∂aXγ ∂bGβγ = 0 .

(5.4.2)
This shows that any given (2 → 2)−generalized map can be extended, with-
out affecting the field equations, to a (2 → D)−generalized harmonic map.

It is worth mentioning that the fact that the target space N becomes split in
two separate parts implies that the energy-momentum tensor Tab = δL/δγab

separates into one part belonging to the gravitational sector and a second one
following from the dimensional extension, i.e. Tab = Tab(X

µ, x) + Tab(X
α, x).

The generalized conservation law as given in (5.3.8) is satisfied by the sum of
both parts.

Consider the example of stationary axisymmetric fields given the metrics
(5.3.9). Taking into account the conditions (5.4.1), after a dimensional exten-
sion the metric of the target space becomes

G =




ρ
2 f 2 0 0 · · · 0

0
ρ

2 f 2 0 · · · 0

0 0 G33(X
α , x) · · · G3D(X

α , x)
. . · · · · · · · · ·
0 0 GD3(X

α, x) · · · GDD(X
α, x)




. (5.4.3)

Clearly, to avoid that this metric becomes degenerate we must demand that
det(Gαβ) 6= 0, a condition that can be satisfied in view of the arbitrariness
of the components of the metric. With the extended metric, the Lagrangian
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density gets an additional term

L =
ρ

2 f 2

[
(∂ρ f )2 + (∂z f )2 + (∂ρΩ)2 + (∂zΩ)2

]
+
(

∂ρXα∂ρXβ + ∂zXα∂zXβ
)

Gαβ ,

(5.4.4)
which nevertheless does not affect the field equations for the gravitational
variables f and Ω. On the other hand, the new fields must be solutions of the
extra field equations

(
∂2

ρ + ∂2
z

)
Xα +Γα

βγ

(
∂ρXβ∂ρXγ + ∂zXβ∂zXγ

)
+Gαγ

(
∂ρXβ∂ρGβγ + ∂zXβ∂zGβγ

)
= 0 .

(5.4.5)

An interesting special case of the dimensional extension is the one in which
the extended sector is Minkowskian, i.e. for the choice Gαβ = ηαβ with addi-
tional fields Xα given as arbitrary harmonic functions. This choice opens the
possibility of introducing a “time” coordinate as one of the additional dimen-
sions, an issue that could be helpful when dealing with the interpretation of
gravitational fields in this new representation.

The dimensional extension finds an interesting application in the case of
static axisymmetric gravitational fields. As mentioned in Section 4.1, these
fields are obtained from the general stationary fields in the limiting case Ω =
0 (or equivalently, ω = 0). If we consider the representation as an SL(2, R)/SO(2)
nonlinear sigma model or as a (2 → 2)−generalized harmonic map, we see
immediately that the limit Ω = 0 is not allowed because the target space
becomes 1-dimensional and the underlying metric is undefined. To avoid
this degeneracy, we first apply a dimensional extension and only then calcu-
late the limiting case Ω = 0. In the most simple case of an extension with
Gαβ = δαβ, the resulting (2 → 2)−generalized map is described by the met-
rics γab = δab and

G =

(
ρ

2 f 2 0

0 1

)
(5.4.6)

where the additional dimension is coordinatized by an arbitrary harmonic
function which does not affect the field equations of the only remaining grav-
itational variable f . This scheme represents an alternative method for explor-
ing static fields on nondegenerate target spaces. Clearly, this scheme can be
applied to the case of gravitational fields possessing two hypersurface or-
thogonal Killing vector fields.

Our results show that a stationary axisymmetric field can be represented as
a string “living” in a D-dimensional target space N. The string world-sheet is
parametrized by the coordinates ρ and z. The gravitational sector of the tar-
get space depends explicitly on the metric functions f and Ω and on the pa-
rameter ρ of the string world-sheet. The sector corresponding to the dimen-
sional extension can be chosen as a (D − 2)−dimensional Minkowski space-
time with time parameter τ. Then, the string world-sheet is a 2-dimensional
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flat hypersurface which is “frozen” along the time τ.

5.5 The general solution

If we take as seed metric the general static solution, the application of two
HXK transformations generates a stationary solution with an infinite number
of gravitoelectric and gravitomagnetic multipole moments. The HKX method
is applied at the level of the Ernst potential from which the metric functions
can be calculated by using the definition of the Ernst potential E and the
field equations for γ. The resulting expressions in the general case are quite
cumbersome. We quote here only the special case in which only an arbitrary
quadrupole parameter is present. In this case, the result can be written as

f =
R

L
e−2qP2Q2 ,

ω = −2a − 2σ
M

R
e2qP2Q2 ,

e2γ =
1

4

(
1 +

M

σ

)2 R

x2 − y2
e2γ̂ , (5.5.1)

where

R = a+a− + b+b− , L = a2
+ + b2

+ ,

M = αx(1 − y2)(e2qδ+ + e2qδ−)a+ + y(x2 − 1)(1 − α2e2q(δ++δ−))b+ ,

γ̂ =
1

2
(1 + q)2 ln

x2 − 1

x2 − y2
+ 2q(1 − P2)Q1 + q2(1 − P2)

[
(1 + P2)(Q

2
1 − Q2

2)

+
1

2
(x2 − 1)(2Q2

2 − 3xQ1Q2 + 3Q0Q2 − Q′
2)

]
. (5.5.2)

Here Pl(y) and Ql(x) are Legendre polynomials of the first and second kind
respectively. Furthermore

a± = x(1 − α2e2q(δ++δ−))± (1 + α2e2q(δ++δ−)) ,

b± = αy(e2qδ+ + e2qδ−)∓ α(e2qδ+ − e2qδ−) ,

δ± =
1

2
ln

(x ± y)2

x2 − 1
+

3

2
(1 − y2 ∓ xy) +

3

4
[x(1 − y2)∓ y(x2 − 1)] ln

x − 1

x + 1
,

the quantity α being a constant

α =
σ − M

a
, σ =

√
M2 − a2 . (5.5.3)

The physical significance of the parameters entering this metric can be clar-
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ified by calculating the Geroch-Hansen [18, 19] multipole moments

M2k+1 = J2k = 0 , k = 0, 1, 2, ... (5.5.4)

M0 = M , M2 = −Ma2 +
2

15
qM3

(
1 − a2

M2

)3/2

, ... (5.5.5)

J1 = Ma , J3 = −Ma3 +
4

15
qM3a

(
1 − a2

M2

)3/2

, .... (5.5.6)

The vanishing of the odd gravitoelectric (Mn) and even gravitomagnetic (Jn)
multipole moments is a consequence of the symmetry with respect to the
equatorial plane. From the above expressions we see that M is the total mass
of the body, a represents the specific angular momentum, and q is related to
the deviation from spherical symmetry. All higher multipole moments can
be shown to depend only on the parameters M, a, and q.

We analyzed the geometric and physical properties of the above solution.
The special cases contained in the general solution suggest that it can be used
to describe the exterior asymptotically flat gravitational field of rotating body
with arbitrary quadrupole moment. This is confirmed by the analysis of the
motion of particles on the equatorial plane. The quadrupole moment turns
out to drastically change the geometric structure of spacetime as well as the
motion of particles, especially near the gravitational source.

We investigated in detail the properties of the Quevedo-Mashhoon (QM)
spacetime which is a generalization of Kerr spacetime, including an arbitrary
quadrupole. Our results show [20] that a deviation from spherical symme-
try, corresponding to a non-zero electric quadrupole, completely changes the
structure of spacetime. A similar behavior has been found in the case of the
Erez-Rosen spacetime. In fact, a naked singularity appears that affects the
ergosphere and introduces regions where closed timelike curves are allowed.
Whereas in the Kerr spacetime the ergosphere corresponds to the boundary
of a simply-connected region of spacetime, in the present case the ergosphere
is distorted by the presence of the quadrupole and can even become trans-
formed into non simply-connected regions. All these changes occur near the
naked singularity which is situated at x = 1, a value that corresponds to the

radial distance r = M +
√

M2 − a2 in Boyer-Lindquist coordinates. In the
limiting case a/M > 1, the multipole moments and the metric become com-
plex, indicating that the physical description breaks down. Consequently,
the extreme Kerr black hole represents the limit of applicability of the QM
spacetime.

Since standard astrophysical objects satisfy the condition a/M < 1, we
can conclude that the QM metric can be used to describe their exterior grav-
itational field. Two alternative situations are possible. If the characteristic

radius of the body is greater than the critical distance M +
√

M2 − a2, i.e.
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x > 1, the exterior solution must be matched with an interior solution in or-
der to describe the entire spacetime. If, however, the characteristic radius of

the body is smaller than the critical distance M +
√

M2 − a2, the QM metric
describes the field of a naked singularity.

The presence of a naked singularity leads to interesting consequences in
the motion of test particles. For instance, repulsive effects can take place in
a region very closed to the naked singularity. In that region stable circular
orbits can exist. The limiting case of static particle is also allowed. Due to
the complexity of the above solution, the investigation of naked singularities
can be performed only numerically. To illustrate the effects of repulsive grav-
ity analytically, we used the simplest possible case which corresponds to the
Reissner-Nordströn spacetime.
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6 Motion of charged test particles
in Reissner–Nordström spacetime

6.1 Introduction

Let us consider the background of a static gravitational source of mass M
and charge Q, described by the Reissner–Nordström (RN) line element in
standard spherical coordinates

ds2 = −∆

r2
dt2 +

r2

∆
dr2 + r2

(
dθ2 + sin2 θdφ2

)
, (6.1.1)

where ∆ = (r − r+)(r − r−) and r± = M ±
√

M2 − Q2 are the radii of the
outer and inner horizon, respectively. Furthermore, the associated electro-
magnetic potential and field are

A =
Q

r
dt, F = dA = −Q

r2
dt ∧ dr , (6.1.2)

respectively.

The motion of a test particle of charge q and mass µ moving in a RN back-
ground (6.1.1) is described by the following Lagrangian density:

L =
1

2
gαβ ẋα ẋβ + ǫAαxα, (6.1.3)

where Aα are the components of the electromagnetic 4–potential, the dot rep-
resents differentiation with respect to the proper time, and the parameter
ǫ = q/µ is the specific charge of the test particle. The equations of motion of
the test particle can be derived from Eq. (6.1.3) by using the Euler–Lagrange
equation. Then,

ẋα∇α ẋβ = ǫF
β
γ ẋγ, (6.1.4)

where Fαβ ≡ Aα,β − Aβ,α.

Since the Lagrangian density (6.1.3) does not depend explicitly on the vari-
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ables t and φ, the following two conserved quantities exist

pt ≡ ∂L

∂ṫ
= −

(
∆

r2
ṫ +

ǫQ

r

)
= −E

µ
, (6.1.5)

pφ =
∂L

∂φ̇
= r2 sin2 θφ̇ =

L

µ
, (6.1.6)

where L and E are respectively the angular momentum and energy of the
particle as measured by an observer at rest at infinity. Moreover, to study
the motion of charged test particles in the RN spacetime it is convenient to
use the fact if the initial position and the tangent vector of the trajectory of
the particle lie on a plane that contains the center of the body, then the entire
trajectory must lie on this plane. Without loss of generality we may therefore
restrict ourselves to the study of equatorial trajectories with θ = π/2.

On the equatorial plane θ = π/2, the motion equations can be reduced
to the form ṙ2 + V2 = E2/µ2 which describes the motion inside an effective
potential V. Then, we define the potential

V± =
E±

µ
=

ǫQ

r
±
√(

1 +
L2

µ2r2

)(
1 − 2M

r
+

Q2

r2

)
(6.1.7)

as the value of E/µ that makes r into a “turning point” (V = E/µ); in other
words, the value of E/µ at which the (radial) kinetic energy of the particle
vanishes [80, 21, 22, 23]. The effective potential with positive (negative) sign
corresponds to the solution with

lim
r→∞

E+ = +µ;
(

lim
r→∞

E− = −µ
)

,

where
E+(L, ǫ, r) ≥ E−(L, ǫ, r), (6.1.8)

and the following relation holds:

E+(L, ǫ, r) = −E−(L,−ǫ, r). (6.1.9)

The behavior of the effective potential strongly depends on the sign of ǫQ; in
particular in the case of ǫQ < 0, negative energy states for the solution E+

can exist (see also [24, 25, 26, 27, 28, 29, 30]).

The problem of finding exact solutions of the motion equations of test par-
ticles moving in a RN spacetime has been widely studied in literature in
many contexts and ways. For a recent discussion we mention the works
[24, 25, 26, 27, 28, 29, 30]. In particular, in a recent paper [24] the full set
of analytical solutions of the motion equations for electrically and magneti-
cally charged test particles is discussed in terms of the Weierstrass (γ, σ and
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ζ) functions. The general structure of the geodesics was discussed and a clas-
sification of their types was proposed. Remarkably, analytical solutions are
found in the case of a central RN source not only with constant electric charge,
but also with constant magnetic charge. It is interesting to notice that if either
the test particle or the central body possesses both types of charge, it turns
out that the motion is no longer confined to a plane. In the present work,
we consider only equatorial circular orbits around a central RN source with
constant electric charge. Instead of solving directly the equations of motion,
we explore the properties of the effective potential function associated to the
motion. Thus, we discuss and propose a classification of the equatorial orbits
in terms of the two constants of motion: the energy E/µ and the orbital an-
gular momentum L/(µM). In fact, we focus our attention on some peculiar
features of the circular motion and the physics around black holes and naked
singularities. In particular, we are interested in exploring the possibility of
distinguishing between black holes and naked singularities by studying the
motion of circular test particles. In this sense, the present work complements
and is different from previous studies [24, 25, 26, 27, 28, 29, 30].

In a previous work [31, 32], we analyzed the dynamics of the RN spacetime
by studying the motion of neutral test particles for which the effective poten-
tial turns out to coincide with V+ as given in Eq.(6.1.7) with ǫ = 0. We will
see that in the case of charged test particles the term ǫQ/r drastically changes
the behavior of the effective potential, and leads to several possibilities which
must analyzed in the case of black holes and naked singularities. In partic-
ular, we will show that for particles moving along circular orbits there exist
stability regions whose geometric structure clearly distinguishes naked sin-
gularities from black holes (see also [33, 34] and [35, 36]). The plan of this
paper is the following: In Sec. 6.2 we investigate the behavior of the effective
potential and the conditions for the motion of positive and negative charged
test particles moving on circular orbits around the central charged mass. This
section also contains a brief analysis of the Coulomb approximation of the ef-
fective potential. In Sec. 6.3, we will consider the black hole case while in Sec.
6.4 we shall focus on the motion around naked singularities. The conclusions
are in Sec. 6.6.

6.2 Circular motion

The circular motion of charged test particles is governed by the behavior of
the effective potential (6.1.7). In this work, we will mainly consider the special
case of a positive solution V+ for the potential in order to be able to compare
our results with those obtained in the case of neutral test particles analyzed
in [31, 32]. Thus, the radius of circular orbits and the corresponding values of
the energy E and the angular momentum L are given by the extrema of the
function V+. Therefore, the conditions for the occurrence of circular orbits
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are:
dV+

dr
= 0, V+ =

E+

µ
. (6.2.1)

When possible, to simplify the notation we will drop the subindex (+) so
that, for example, V = E/µ will denote the positive effective potential solu-
tion. Solving Eq. (6.2.1) with respect to L, we find the specific angular mo-
mentum

(L±)2

µ2
=

r2

2Σ2

[
2(Mr − Q2)Σ + ǫ2Q2∆ ± Q∆

√
ǫ2 (4Σ + ǫ2Q2)

]
, (6.2.2)

where Σ ≡ r2 − 3Mr + 2Q2, of the test particle on a circular orbit of radius r.
The corresponding energy can be obtained by introducing the expression for
the angular momentum into Eq. (6.1.7). Then, we obtain

E±

µ
=

ǫQ

r
+

∆

√
2Σ + ǫ2Q2 ± Q

√
ǫ2(4Σ + ǫ2Q2)

√
2r|Σ|

. (6.2.3)

The sign in front of the square root should be chosen in accordance with the
physical situation. This point will be clarified below by using the formalism
of orthonormal frames.

An interesting particular orbit is the one in which the particle is located at
rest as seen by an observer at infinity, i.e., L = 0. These “orbits” are therefore
characterized by the following conditions

L = 0,
dV

dr
= 0. (6.2.4)

[83]. Solving Eq. (6.2.4) for Q 6= 0 and ǫ 6= 0, we find the following radius

r±s ≡
(
ǫ2 − 1

)
Q2M

ǫ2Q2 − M2
±
√

ǫ2Q4 (ǫ2 − 1) (M2 − Q2)

(ǫ2Q2 − M2)
2

. (6.2.5)

Table 6.1 shows the explicit values of all possible radii for different values
of the ratio Q/M. A particle located at r = rs with angular momentum L = 0
will have the energy (see also [37, 38, 83, 39, 40, 41, 42])

E±
s

µ
≡ 1

Q




√
M2 − Q2

ǫ2 − 1
+

ǫ

ǫ2−1
ǫ2Q2−M2 ±

√
ǫ2(M2−Q2)(ǫ2−1)

(ǫ2Q2−M2)2


 . (6.2.6)

The minimum radius for a stable circular orbit occurs at the inflection points
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6.2 Circular motion

0 < Q < M Q = M Q > M

ǫ Radius ǫ Radius ǫ Radius
ǫ > M/Q r = r+s ǫ = 1 r > M −M/Q < ǫ < 0 r = r−s

ǫ = −M/Q r = Q2/(2M)
−1 < ǫ ≤ −M/Q r = r+s
ǫ = 0 r = Q2/M
0 < ǫ < M/Q r = r+s

Table 6.1: Radii of the “orbits” characterized by the conditions L = 0 and dV/dr = 0.

of the effective potential function; thus, we must solve the equation

d2V

dr2
= 0, (6.2.7)

for the orbit radius r, using the expression (6.2.2) for the angular momentum
L. From Eq. (6.2.1) and Eq. (6.2.7) we find that the radius of the last stable
circular orbit and the angular momentum of this orbit are related by the fol-
lowing equations

(
L2 + Q2 − 1

)
r6 − 6L2r5 + 6L2

(
1 + Q2

)
r4 − 2L2

(
2L2 + 5Q2

)
r3

+L2
(

3L2 + 3L2Q2 + 3Q4
)

r2 − 6L4Q2r + 2L4Q4 = 0 ,

and

Q2r2 − r3 + L2
(

2Q2 − 3r + r2
)
+ Qr3

√
(L2 + r2) (Q2 − 2r + r2)

r4
ǫ = 0 ,

(6.2.8)
where in order to simplify the notation we introduced the normalized quan-
tities L → L/(M/µ), r → r/M, and Q → Q/M. Equation (6.2.8) depends
on the test particle specific charge ǫ via the function L as given in Eq. (6.2.2).
It is possible to solve Eq. (6.2.8) for the last stable circular orbit radius as a
function of the free parameter L. We find the expression

(L±
lsco)

2

µ2
=

r2

2 [2Q4 + 3Q2r(r − 2M)− (2r − 3M)r2][
2Q2(5M − 3r)r − 3Q4 − r2[6M2 + (r − 6M)r]

±
√

9Q2 + (r − 6M)r
(

Q2 + (r − 2M)r
)3/2

]

(6.2.9)

for the angular momentum of last stable circular orbit. Eq. (6.2.9) can be
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6 Motion of charged test particles in Reissner–Nordström spacetime

substituted in Eq. (6.2.8) to find the radius of the last stable circular orbit.

6.2.1 Coulomb potential approximation

Consider the case of a charged particle moving in the Coulomb potential

U(r) =
Q

r
.

This means that we are considering the motion described by the following
effective potential

V+ =
E+

µ
=

ǫQ

r
+

√

1 +
L2

µ2r2
, (6.2.10)

where ǫQ < 0. The Coulomb approximation is interesting for our further
analysis because it corresponds to the limiting case for large values of the
radial coordinate r [cf. Eq.(6.1.7)].

Circular orbits are therefore situated at r = rc with

rc =

√
L2

µ2

(
L2

ǫ2Q2
− 1

)
and

L2

µ2
≥ ǫ2Q2, (6.2.11)

and in the case ǫ = 0 with Q > 0, circular orbits exist in all r > 0 for L = 0. We
conclude that in this approximation circular orbits always exist with orbital
radius rc and angular momentum satisfying the condition |L|/µ ≥ |ǫQ|. For
the last stable circular orbit situated at r = rlsco we find

rlsco = 0 with
E+(rlsco)

µ
= 0 and

|L|
µ

= |ǫQ| . (6.2.12)

This means that, in the approximation of the Coulomb potential, all the cir-
cular orbits are stable, including the limiting case of a particle at rest on the
origin of coordinates.

Furthermore, Eqs. (6.2.11–6.2.12) show that, in contrast with the general
RN case, for a charged particle moving in a Coulomb potential only positive
or null energy solutions can exist. See Fig. 6.1 where the potential (6.2.10) is
plotted as a function of the orbital radius for different values of the angular
momentum.

6.3 Black holes

In the case of a black hole (M2 > Q2) the two roots V± of the effective poten-
tial are plotted as a function of the ratio r/M in Fig. 6.2 for a fixed value of
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Figure 6.1: Effective potential for a charged test particle with ǫ = −2 moving in a Coulomb
potential with Q/M = 2 for different values of the momentum L∗ ≡ L/(µM). The points
indicate the minima of the potential. In particular, for L∗ = |ǫQ|/M the potential vanishes
on the origin r = 0 (see text).

the charge–to–mass ratio of the test particle and different values of the angu-
lar momentum L/(Mµ) (see also [43, 44, 45, 46, 47, 48]). Notice the presence
of negative energy states for the positive solution V+ = E+/µ of the effective
potential function. Negative energy states for V+ are possible only in the case
ǫQ < 0. In particular, the largest region in which the V+ solution has negative
energy states is

M +
√

M2 − Q2 < r ≤ M +
√

M2 − Q2 (1 − ǫ2) (6.3.1)

and corresponds to the limiting case of vanishing angular momentum (L =
0). For L 6= 0 this region becomes smaller and decreases as L increases. For a

given value of the orbit radius, say r0, such that r0 < M+
√

M2 − Q2 (1 − ǫ2),
the angular momentum of the test particle must be chosen within the interval

0 <
L2

µ2
< r2

0

(
ǫ2Q2

r2
0 − 2Mr0 + Q2

− 1

)
(6.3.2)

for a region with negative energy states to exist. This behavior is illustrated
in Fig. 6.2.

Fig. 6.3 shows the positive solution V+ of the effective potential for differ-
ent values of the momentum and for positive and negative charged particles.
In particular, we note that, at fixed Q/M for a particle with |ǫ| < 1, in the
case ǫQ > 0 the stable orbit radius is larger than in the case of attractive
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Figure 6.2: The effective potential as a function of r/M for a charged particle of charge–
to–mass ratio ǫ ≡ q/µ moving in a Reissner–Nordström black hole of charge Q and mass M.
The graphic shows the positive E+/µ (black curves) and negative roots E−/µ (gray curves)
of the effective potential for Q/M = 0.5, ǫ = −2, and different values of the momentum

L∗ ≡ L/(Mµ). The outer horizon is located at r+ ≡ M +
√

M2 − Q2 ≈ 1.87M. Note the
presence of negative energy states for the positive roots.

electromagnetic interaction, i. e., ǫQ < 0. In Fig. 6.4, the potential V+ of
an extreme black hole is plotted for different, positive and negative values of
the test particle with charge–to–mass ratio ǫ. In this case, it is clear that the
magnitude of the energy increases as the magnitude of the specific charge of
the particle ǫ increases.

As mentioned in Sec. 6.2, in the case of the positive solution for the effective
potential the conditions for the existence of circular orbits

ṙ = 0, V =
E

µ
,

dV

dr
= 0. (6.3.3)

lead to Eqs.(6.2.2) and (6.2.3) in which the selection of the (±) sign inside
the square root should be done properly. To clarify this point we consider
explicitly the equation of motion for a charged particle in the gravitational
field of a RN black hole.

a(U)α = ǫFα
βUβ, (6.3.4)

where a(U) = ∇UU is the particle’s 4–acceleration. Introducing the or-
thonormal frame

et̂ =
r

∆1/2
∂t, er̂ =

∆1/2

r
∂r, eθ̂ =

1

r
∂θ, eφ̂ =

1

r sin θ
∂φ, (6.3.5)
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Figure 6.3: The effective potential V+ for a charged particle of charge–to-mass ratio, ǫ =
q/µ, moving in a Reissner-Nordström spacetime of charge Q and mass M with charge–to–
mass ratio Q/M = 0.5 is plotted as a function of the radial coordinate r/M for different
values of the angular momentum L∗ ≡ L/(Mµ). The outer horizon is located at r+ ≈ 1.87M.
In the graphic on the left with ǫ = 0.1, the effective potential for L∗ ≈ 3.5 has a minimum
Vmin ≈ 0.954 at rmin ≈ 8.84M. In the graphic on the right with ǫ = −0.1, the minimum
Vmin ≈ 0.94 is located at rmin ≈ 7.13M for L∗ ≈ 3.5.
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Figure 6.4: The effective potential V+ is plotted as a function of r/M for a charged test
particle with specific charge ǫ = q/µ moving in the field of a Reissner-Nordström extreme
black hole (Q = M). Here L/(Mµ) = 4, and the effective potential is plotted for different

values of ǫ. The outer horizon is located at r+ ≡ M +
√

M2 − Q2 = M. Note the presence of
negative energy states for particles with negative ǫ.
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6 Motion of charged test particles in Reissner–Nordström spacetime

with dual

ω t̂ =
∆1/2

r
dt, ωr̂ =

r

∆1/2
dr, ωθ̂ = rdθ, ωφ̂ = r sin θdφ , (6.3.6)

the tangent to a (timelike) spatially circular orbit uα can be expressed as

u = Γ(∂t + ζ∂φ) = γ
(

et̂ + νeφ̂

)
,

where Γ and γ are normalization factors

Γ2 = (−gtt − ζ2gφφ)
−1 and γ2 = (1 − ν2)−1,

which guarantees that uαuα = −1. Here ζ is the angular velocity with re-
spect to infinity and ν is the “local proper linear velocity” as measured by an
observer associated with the orthonormal frame. The angular velocity ζ is
related to the local proper linear velocity by

ζ =

√
− gtt

gφφ
ν .

Since only the radial component of the 4–velocity is non-vanishing, Eq. (6.3.4)
can be written explicitly as

0 = γ(ν2 − ν2
g) +

νg

ζg

ǫQ

r2
, (6.3.7)

where

ζg = ±
√

Mr − Q2

r2
, νg =

√
Mr − Q2

∆
. (6.3.8)

This equation gives the values of the particle linear velocity ν = ±ν±ǫ which
are compatible with a given value of ǫQ on a circular orbit of radius r, i. e.,

ν±ǫ = νg

√√√√√1 − Q2ǫ2

2r4ζ2
g

± Q

r2ζgνg

√√√√ ǫ2

γ2
g
+

Q2ǫ4ν2
g

4r4ζ2
g

, (6.3.9)

where

γg =

(
∆

r2 − 3Mr + 2Q2

)1/2

,

and
γ±

ǫ = (1 − ν±ǫ
2)−1/2. (6.3.10)

In the limiting case of a neutral particle (ǫ = 0), Eq.(6.3.7) implies that the
linear velocity of the particle is νg.
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We introduce the limiting value of the parameter ǫ corresponding to a par-
ticle at rest, ν = 0, in Eq. (6.3.7), i. e.,

ǫ0 = νgζg
r2

Q
=

Mr − Q2

Q
√

∆
. (6.3.11)

By introducing this quantity into Eq. (6.3.7), one gets the following equivalent
relation

ǫ

ǫ0
= γ

(
1 − ν2

ν2
g

)
, (6.3.12)

whose solution (6.3.9) can be conveniently rewritten as

ν±ǫ = νg

[
Λ ±

√
Λ2 − 1 + (ǫ/ǫ0)2

]1/2

, (6.3.13)

where

Λ = 1 −
ν2

g

2

(
ǫ

ǫ0

)2

. (6.3.14)

Moreover, from Eq. (6.3.12) it follows that ǫ < 0 implies that ν2 > ν2
g (because

ǫ0 is always positive for r > r+), so that the allowed solutions for ν can exist
only for r ≥ r+γ , where

r+γ ≡ 1

2

(
3M +

√
9M2 − 8Q2

)
, (6.3.15)

the equality corresponding to νg = 1. In this case, the solutions of Eq. (6.3.7)
are given by ν = ±ν+ǫ .

For ǫ > 0, instead, solutions can exist also for r+ < r < r+γ . The situation
strongly depends on the considered range of values of ǫ and is summarized
below.

Equation (6.3.13) gives the following conditions for the existence of veloc-
ities

Λ2 − 1 + (ǫ/ǫ0)
2 ≥ 0 , (6.3.16)

Λ ±
√

Λ2 − 1 + (ǫ/ǫ0)2 ≥ 0 . (6.3.17)

The second condition, Eq. (6.3.17), is satisfied by

r ≥ rl ≡
3M

2
+

1

2

√
9M2 − 8Q2 − ǫ2Q2. (6.3.18)

Moreover for Q = M and ǫ = 1 it is Λ +
√

Λ2 − 1 + (ǫ/ǫ0)2 ≥ 0 when M <

r < (3/2)M. However it is also possible to show that condition Eq. (6.2.1) is
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satisfied for 0 < Q < M and ǫ > 0 only in the range r ≥ rl.

Requiring that the argument of the square root be nonnegative implies

ǫ ≤ ǫl ≡
√

9M2 − 8Q2

Q
. (6.3.19)

The condition (6.3.17) will be discussed later.

From the equation of motion (6.3.12) it follows that the velocity vanishes
for ǫ/ǫ0 = 1, i. e., for [cf. Eq.(6.2.5)]

r = rs ≡
Q2

ǫ2Q2 − M2

[
M(ǫ2 − 1) +

√
ǫ2(ǫ2 − 1)(M2 − Q2)

]
, (6.3.20)

which exists only for ǫ > M/Q. We thus have that

ǫ

ǫ0
> 1 for r > rs, (6.3.21)

whereas
ǫ

ǫ0
< 1 for r+ < r < rs . (6.3.22)

On the other hand, the condition ν = 0 in Eq. (6.3.13) implies that

[
Λ ±

√
Λ2 − 1 + (ǫ/ǫ0)2

]

ǫ/ǫ0=1

= 0, (6.3.23)

i. e.
[

Λ ±
√

Λ2 − 1
]

r=rs

= 0, (6.3.24)

thus ν−ǫ is identically zero whereas ν+ǫ = 2Λ(rs) = 0 only for

ǫ = ǫ̃ ≡ 1√
2Q

√
5M2 − 4Q2 +

√
25M2 − 24Q2. (6.3.25)

Finally, the lightlike condition ν = 1 is reached only at r = r+γ , where νg =
1 = ν.

The behavior of charged test particles depends very strongly on their lo-
cation with respect to the special radii r+, rl , r+γ , and rs. In Sec. 6.3.1 the
behavior of these radii will be analyzed in connection with the problem of
stability of circular orbits.

On the other hand, the particle’s 4–momentum is given by P = mU − qA.
Then, the conserved quantities associated with the temporal and azimuthal
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Figure 6.5: The positive solution of the linear velocity ν+ǫ is plotted as a function of the
radial distance r/M for the parameter choice Q/M = 0.6 and ǫ = −3 so that r+γ /M ≈ 2.74
and the outer horizon is located at r+/M = 1.8. The geodesic velocity νg is also shown (gray
curve). The shaded region (r < r+γ ) is forbidden.

Killing vectors ξ = ∂t and η = ∂φ are respectively

P · ξ = −ǫQ

r
− γ

√
∆

r
= −E

µ
, (6.3.26)

P · η =
r

M
γν =

L

Mµ
, (6.3.27)

where E/µ and L/µ are the particle’s energy and angular momentum per
unit mass, respectively (see also Eqs.(6.2.2) and (6.2.3) ).

Let us summarize the results.

Case ǫ < 0

The solutions are the geodesic velocities ν = ±ν+ǫ in the range r ≥ r+γ as

illustrated in Fig. 6.5. Orbits with radius r = r+γ are lightlike. We can also
compare the velocity of charged test particles with the geodesic velocity νg

for neutral particles. For r > r+γ we see that ν+ǫ > νg always. This means that,
at fixed orbital radius, charged test particles acquire a larger orbital velocity
compared to that of neutral test particles in the same orbit. As it is possible
to see from Eq. (6.3.9) and also in Fig. 6.6, an increase in the particle charge
ǫ < 0 corresponds to an increase in the velocity ν+ǫ . As the orbital radius
decreases, the velocity increases until it reaches the limiting value ν+ǫ = 1
which corresponds to the velocity of a photon. This fact can be seen also in
Fig. 6.7, where the energy and angular momentum for circular orbits are
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Figure 6.6: The positive solution of the linear velocity ν+ǫ is plotted as a function of the ra-
dial distance r/M for the parameter choice Q/M = 0.6 and different values of ǫ = −5 (black
curve), ǫ = −3 (thick black curve), and ǫ = −0.5 (dashed curve). The geodesic velocity νg

for ǫ = 0 is also shown (gray curve). The choice of parameters implies that r+γ /M ≈ 2.74

and the outer horizon is located at r+/M = 1.8. The shaded region is forbidden. For r > r+γ
it holds that ν+ǫ > νg.

plotted in terms of the distance r. Clearly, this graphic shows that to reach
the photon orbit at r = r+γ , the particles must acquire and infinity amount of
energy and angular momentum. In Fig. 6.8 we analyze the behavior of the
particle’s energy and angular momentum in terms of the specific charge ǫ. It
follows that both quantities decrease as the value of |ǫ| decreases.

Case ǫ = 0

The solutions are the geodesic velocities ν = ±νg in the range r ≥ r+γ . This
case has been studied in detail in [31].

Case ǫ > 0

Depending on the explicit values of the parameters Q and ǫ and the radial
coordinate r, it is necessary to analyze several subcases.

a) ǫ < M/Q and r ≥ rl.

There are two different branches for both signs of the linear velocity:
ν = ±ν+ǫ in the range rl ≤ r ≤ r+γ , and ν = ±ν−ǫ in the whole range

r ≥ rl. The two branches join at r = rl, where ν+ǫ = ν−ǫ = νg

√
Λ, as

shown in Fig. 6.9. First we note that in this case for r > r+γ it always

holds that ν−ǫ < νg. This means that, at fixed orbital radius, charged
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Figure 6.7: The energy E/µ and angular momentum L∗ ≡ L/(µM) of a charged particle
of charge–to–mass ratio ǫ moving in the field of a RN black hole with charge Q and mass M
are plotted as functions of the radial distance r/M for the parameter choice Q/M = 0.6 and
ǫ = −3, with r+γ /M ≈ 2.74 and the outer horizon located at r+/M = 1.8. The shaded region
is forbidden.
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Figure 6.8: The energy E/µ and angular momentum L∗ ≡ L/(µM) of a charged particle
of charge–to–mass ratio ǫ moving in the field of a RN black hole with charge Q and mass
M are plotted as functions of the radial distance r/M for the parameter choice Q/M0.6 and
ǫ = −3 (solid curves), ǫ = −5 (dashed curves), ǫ = −0.5 (dotted curves). Here r+γ /M ≈ 2.74
and the outer horizon is located at r+/M = 1.8. The shaded region is forbidden. The energy
and angular momentum decrease as |ǫ| decreases.
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Figure 6.9: The positive solution of the linear velocity ν±ǫ is plotted as a function of the
radial distance r/M in the region [1.8, 5] (left graphic) and [2.5, 3] (right graphic). Here
Q/M = 0.6 and ǫ = 1.2, so that rl/M = 2.68 and r+γ = 2.737M. For the chosen param-

eters we have that ǫ̃ = 3.25 and ǫl = 4.12. The region within the interval [rl , r+γ ] is forbidden
for neutral particles.

test particles possess a smaller orbital velocity than that of neutral test
particles in the same orbit. This is in accordance to the fact that in this
case, a black hole with ǫQ > 0, the attractive gravitational force is bal-
anced by the repulsive electromagnetic force. In the region r > r+γ , the

orbital velocity increases as the radius approaches the value r+γ (see Fig.

6.9). The interval rl ≤ r ≤ r+γ presents a much more complex dynam-
ical structure. First we note that, due to the Coulomb repulsive force,
charged particle orbits are allowed in a region which is forbidden for
neutral test particles. This is an interesting result leading to the pos-
sibility of accretion disks in which the innermost part forms a ring of
charged particles only. Indeed, suppose that an accretion disk around a
RN black hole is made of neutral and charged test particles. Then, the
accretion disk can exist only in the region r ≥ rl with a ring of charged
particles in the interval [rl , r+γ ). Outside the exterior radius of the ring

(r > r+γ ), the disk can be composed of neutral and charged particles.
This situation can also be read from Fig. 6.10 where the energy and the
angular momentum are plotted as functions of the radial distance r/M.

b) M/Q < ǫ < ǫ̃ and rl ≤ r ≤ rs.

Since r < rs, one has that ǫ/ǫ0 < 1, implying that both solutions ν+ǫ and
ν−ǫ can exist. There are two different branches for both signs: ν = ±ν+ǫ
in the range rl ≤ r ≤ r+γ , and ν−ǫ in the entire range rl ≤ r ≤ rs. The
two branches join at r = rl. Note that for increasing values of ǫ, the ra-
dius rs decreases and approaches rl, reaching it at ǫ = ǫ̃, and as ǫ tends
to infinity rs tends to the outer horizon r+ (see Fig. 6.11). In partic-
ular, the interaction between the attractive gravitational force and the
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Figure 6.10: The energy E/µ and angular momentum L∗ ≡ L/(µM) of a charged particle
of charge–to–mass ratio ǫ moving along circular orbits in a Reissner–Nordström black hole
of charge Q and mass M are plotted in terms of the radial distance r/M in the range [2.6, 3.8]
(left graphic) [2.68, 2.74] (right graphic). Here Q/M = 0.6 and ǫ = 1.2, so that rl/M = 2.68
and r+γ /M = 2.737. For the chosen parameters we have that ε̃ = 3.25 ǫl = 4.12. The shaded
region is forbidden for any particles.
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Figure 6.11: Radius rs = r+s (black curve) and rl = r+l (gray curve), are plotted as function

of ǫ for Q = 0.6M. r+s = r+l for ǫ = ǫ̃ ≈ 3.25.
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Figure 6.12: Left graphic: The positive solution of the linear velocity ν is plotted as a
function of the radial distance r/M. Right graphic: The energy E/µ and angular momentum
L∗ ≡ L/(µM) of a charged particle of charge–to–mass ratio ǫ are plotted in terms of r/M.
The parameter choice is Q/M = 0.6 and ǫ = 2.1. Then, rl/M = 2.56, r+γ /M = 2.737,
and rs/M = 3.99. Moreover, for this choice ǫ̃ = 3.25 and ǫl = 4.12. The shaded region is
forbidden.

Coulomb force generates a zone rl ≤ r ≤ r+γ in which only charged test
particles can move along circular trajectories while neutral particles are
allowed in the region r > r+γ (see Fig. 6.12). This result again could be
used to construct around black holes accretion disks with rings made of
charged particles.

c) ǫ̃ < ǫ < ǫl and rs < r < r+γ .

The solution ν−ǫ for the linear velocity is not allowed whereas the solu-
tion ν+ǫ is valid in the entire range. In fact, the condition r > rs implies
that ǫ/ǫ0 > 1, and therefore Λ2 − 1 + (ǫ/ǫ0)

2 > Λ2, so that the condi-
tion (6.3.17) for the existence of velocities is satisfied for the plus sign
only. Therefore, the solutions are given by ν = ±ν+ǫ in the entire range
as shown in Fig. 6.13. At the radius orbit r = rs, the angular mo-
mentum and the velocity of the test particle vanish, indicating that the
particle remains at rest with respect to static observers located at infin-
ity. In the region rs < r < r+γ only charged particles can move along
circular trajectories.

d) ǫ > ǫl and rs < r < r+γ .

In this case the radius rl does not exist. The solutions are the velocities
ν = ±ν+ǫ in the entire range. Note that for ǫ → ∞ one has that rs →
r+. Also in this case we note that neutral particles can stay in circular
orbits with a velocity νg only in the region r > r+γ whereas charged test

particles are allowed within the interval rs < r < r+γ , as shown in Fig.
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Figure 6.13: Left graphic: The positive solution of the linear velocity ν is plotted as a func-
tion of the radial distance r/M. Right graphic: The energy E/µ and angular momentum
L∗ ≡ L/(µM) of a charged particle of charge–to-mass ratio ǫ = 3.8 moving in a RN space-
time with Q/M = 0.6 are plotted in terms of the radial distance r/M. For this choice of
parameters the radii are rl/M = 1.98, rs/M = 2.11, and r+γ /M = 2.737 whereas the charge
parameters are ǫ̃ = 3.25 and ǫl = 4.12.

6.14. Clearly, for charged and neutral test particles the circular orbit at
r = r+γ corresponds to a limiting orbit.

6.3.1 Stability

To analyze the stability of circular orbits for charged test particles in a RN
black hole we must consider the condition (6.2.7) which leads to the Eqs.(6.2.8),
(6.2.8), and (6.2.9). So the stability of circular orbits strongly depends on the
sign of (ǫQ). The case ǫQ ≤ 0 is illustrated in Fig. 6.15 where the radius
of the last stable circular orbit rlsco is plotted for two different values of ǫ as a
function of Q/M. It can be seen that the energy and angular momentum of
the particles decrease as the value of Q/M increases. These graphics also in-
clude the radius of the outer horizon r+ and the radius r+γ which determines
the last (unstable) circular orbit of neutral particles. In Sec. 6.3, we found that
circular orbits for charged particles are allowed also inside the radius r+γ for

certain values of the parameters; however, since r+γ < rlsco, we conclude that
all those orbits must be unstable. From Fig. 6.16 we see that for Q = 0 and
ǫ = 0, the well-known result for the Schwarzschild case, rlsco = 6M, is recov-
ered. Also in the limiting case Q = M and ǫ = 0, we recover the value of
rlsco = 4M for neutral particles moving along circular orbits in an extreme BN
black hole. In general, as the value of |ǫ| increases we see that the value of rlsco

increases as well. This behavior resembles the case of the radius of the last
stable orbit for neutral test particles [31, 32]. Indeed, in the case ǫQ < 0 the
attractive Coulomb force reinforces the attractive gravitational force so that
the general structure remains unchanged. We also can expect that an increase
in the charge of the particle |ǫ| produces an increase in the velocity of the sta-
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Figure 6.14: Left graphic: The positive solution of the linear velocity ν is plotted as a
function of the radial distance r/M. Right graphic: The energy E/µ and angular momentum
L∗ ≡ L/(µM) of a charged particle of charge–to–mass ratio ǫ = 7, moving in the field of
a RN black hole with Q/M = 0.6, are plotted in terms of the radial distance r/M. For this
parameter choice rs/M = 1.88, ǫ̃ = 3.25, and ǫl = 4.12.
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Figure 6.15: The radius of the last stable circular orbit rlsco in a RN black hole of mass M
and charge Q for a particle with ratio ǫ = −0.2 (left plot) and ǫ = −1.5 (right plot). Numbers
close to the point represent the energy E/µ of the last stable circular orbits at that point. Un-
derlined numbers represent the corresponding angular momentum L/(Mµ). Stable orbits
are possible only for r > rlsco. For comparison we also include the curves for the radii r+ and
r+γ .
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Figure 6.16: The radius rlsco of the last stable circular orbit in a RN black with charge–to–
mass ratio Q/M for selected values of the charge–to–mass ratio ǫ of the test particle. Only
the case ǫQ ≤ 0 is illustrated. Stable orbits are possible only for r > rlsco

ble circular orbits. In fact, this can be seen explicitly from Eq. (6.3.9) and Fig.
6.6. It then follows that the energy and angular momentum of the charged
test particle increases as the value of |ǫ| increases.

The case of ǫQ > 0 is illustrated in Figs. 6.17 and 6.18. The situation is very
different from the case of neutral particles or charged particles with ǫQ < 0.
Indeed, in this case the Coulomb force is repulsive and leads to a non trivial
interaction with the attractive gravitational force, see also [50, 51, 52, 53, 54,
55, 56, 57, 58, 59]. It is necessary to analyze two different subcases. The first
subcase for ǫ > 1 is illustrated in Fig. 6.17 while the second one for 0 < ǫ < 1
is depicted in Fig. 6.18. We can see that in the case 0 < ǫ < 1 the stability
regions are similar to those found in the case ǫ < 0 (cf. Figs. 6.15 and 6.18).
This means that for weakly–charged test particles, 0 < ǫ < 1, it always exists
a stable circular orbit and rlsco ≥ 4M, where the equality holds for an extreme
black hole. On the contrary, in the case ǫ > 1 there are regions of Q and ǫ in
which stable circular orbits cannot exist at all. As can be seen from Fig. 6.17,
charged particles moving along circular orbits with radii located within the
region r < r+γ or r < rs must be unstable.

We conclude that the ring structure of the hypothetical accretion disks around
a RN black hole mentioned in Sec. 6.3 must be unstable.

6.4 Naked singularities

The effective potential V± given in Eq. (9) in the case of naked singularities
(M2 < Q2) is plotted in Figs. (6.19–6.22) in terms of the radial coordinate
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Figure 6.17: The radius of the last stable circular orbit rlsco (solid curve) for a charged test
particle with ǫ = 7, in a RN black hole with charge Q and mass M, is plotted as a function

of the ratio Q/M. Other curves are the outer horizon radius r+ = M +
√

M2 − Q2 and the

radii r+γ ≡ [3M +
√
(9M2 − 8Q2)]/2, rs ≡ Q2

ǫ2Q2−M2

[
ǫ
√

M2 − Q2
√

ǫ2 − 1 + M(ǫ2 − 1)
]
, rl ≡

3M
2 + 1

2

√
9M2 − 8Q2 − Q2ǫ2. Shaded and dark regions are forbidden for timelike particles.

Stable orbits are possible only for r > rlsco.
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Figure 6.18: The radius of the last stable circular orbit rlsco (solid curve) for a charged test
particle with ǫ = 0.5, in a RN black hole with charge Q and mass M, is plotted as a function of
the ratio Q/M. Other curves are the outer horizon radius r+ and the radius r+γ . Shaded and
dark regions are forbidden for timelike particles. Stable orbits are possible only for r > rlsco.

748



6.4 Naked singularities

0 1 2 3 4 5 6 7
-10

-8

-6

-4

-2

0

2

4

r�M

V
L*=0

L*=3

L*=5

L*=6

0 1 2 3 4 5 6 7
-4

-2

0

2

4

r�M

V

L*=0

L*=3 L*=5
L*=6

0 1 2 3 4
-4

-2

0

2

4

r�M

V

L*=0
L*=3 L*=5

L*=6

L*=0
L*=3

L*=5
L*=6

Figure 6.19: The effective potential for a charged particle with charge–to–mass ratio ǫ in a
RN naked singularity of charge Q and mass M is plotted as a function of the radius r/M for
fixed values of the angular momentum L∗ ≡ L/(µM). Black curves represent the positive
solution V+ while gray curves correspond to V−. The boldfaced points denote the minima
of the potentials. In upper left plot, the parameter choice is Q/M = 2 and ǫ = −1.5; the
upper right plot is for Q/M = 2 and ǫ = −5 while the bottom plot corresponds to the choice
Q/M = 1.5 and ǫ = −0.2.

r/M for selected values of the ratio ǫ and the angular momentum L/(Mµ) of
the test particle, see also [60, 61, 62, 63, 64, 65, 43, 49]. The effective potential
profile strongly depends on the sign of ǫQ. Moreover, the cases with |ǫ| ≤ 1
and with |ǫ| > 1 must be explored separately.

Fig. 6.20 shows the effective potential for a particle of charge–to–mass ǫ
in the range [−10,−1]. The presence of minima (stable circular orbits) in the
effective potential with negative energy states is evident. Moreover, we note
that the minimum of each potential decreases as |ǫ| increases. This fact is due
to the attractive and repulsive effects of the gravitational and electric forces
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59] . In Fig. 6.21 the effective potential is
plotted for negative and positive values of the charge–to–mass ratio ǫ. We see
that for a fixed value of the radial coordinate and the angular momentum of
the particle, the value of the potential V increases as the value of ǫ increases.
In the Fig. 6.22 we plot the effective potential for a fixed Q/M as function
of the radial coordinate and the angular momentum for two different cases,
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Figure 6.20: The effective potential of a RN naked singularity with Q/M = 2 for a particle
with charge–to–mass ratio ǫ in the range [−10,−1] and angular momentum L/(Mµ) = 4.
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Figure 6.22: The effective potential V+ of a RN naked singularity with Q/M = 3/2 for a
charged particle is plotted for different values of the angular momentum L∗ ≡ L/(Mµ). The
left plot corresponds to the ratio ǫ = 0.1 while the right one is for ǫ = −0.1. For ǫ = 0.1 there
is a minimum, Vmin ≈ 0.81, at rmin ≈ 2.52M for L∗ = 0, and a minimum, Vmin ≈ 0.96, at
rmin ≈ 29M for L∗ = 5. For ǫ = −0.1 the minimum, Vmin ≈ 0.67, is located at rmin ≈ 2.02M
for L∗ = 0, and at rmin ≈ 20.8M with Vmin ≈ 0.97 for L∗ = 5.

ǫ = 0.1 and ǫ = −0.1. We can see that in the first case the presence of a
repulsive Coulomb force reduces the value of the radius of the last stable
circular orbit for a fixed angular momentum. We note the existence of stable
“circular” orbits with L = 0 at which the particle is at rest with respect to
static observers located at infinity.

Negative energy states are possible only in the case ǫQ < 0. The region in
which the solution V+ has negative energy states is

0 < r < M +
√

M2 − Q2 (1 − ǫ2) for ǫ ≤ −1 , (6.4.1)

and
0 < r < r+l for 0 ≤ L < Lq , ǫ ≤ −1 , (6.4.2)

r−l < r < r+l for 0 ≤ L < Lq , −1 < ǫ ≤ −
√

1 − M2

Q2
, (6.4.3)

where

Lq

µ
≡ r

√
ǫ2Q2

r2 − 2Mr + Q2
− 1 . (6.4.4)

In general, for a particle in circular motion with radius r0 and charge–to–
mass ratio ǫ, around a RN naked singularity with charge Q and mass M, the
corresponding angular momentum must be chosen as

L2

µ2
< r2

0

(
ǫ2Q2

r2
0 − 2Mr0 + Q2

− 1

)
, (6.4.5)
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in order for negative energy states to exist.

The conditions for circular motion around a RN naked singularity are de-
termined by Eq. (6.2.1) which can be used to find the energy and angular
momentum of the test particle. Indeed, Eqs. (6.2.2) and (6.2.3) define the an-
gular momentum L± and the energy E±, respectively, in terms of r/M, Q/M,
and ǫ. The explicit dependence of these parameters makes it necessary to in-
vestigate several intervals of values. To this end, it is useful to introduce the
following notation

r±l ≡ 3M

2
± 1

2

√
9M2 − 8Q2 − Q2ǫ2 , (6.4.6)

ǫ̃± ≡ 1√
2Q

√
5M2 ± 4Q2 +

√
25M2 − 24Q2 , (6.4.7)

and

˜̃ǫ± ≡ 1√
2Q

√
3M2 − 2Q2 ± M

√
9M2 − 8Q2 . (6.4.8)

We note that

lim
ǫ→0

r±s = r∗ =
Q2

M
, (6.4.9)

which corresponds to the classical radius of a mass M with charge Q, see for
example [66, 67], and

lim
ǫ→0

r±l = r±γ =
3M

2
± 1

2

√
9M2 − 8Q2 , (6.4.10)

which represents the limiting radius at which neutral particles can be in cir-
cular motion around a RN naked singularity [31].

The behavior of the charge parameters defined above is depicted in Fig.
6.23 in terms of the ratio Q/M > 1. It follows from Fig. 6.23 that it is
necessary to consider the following intervals:

Q/M ∈ (1, 5/(2
√

6)], (6.4.11)

Q/M ∈ (5/(2
√

6), (3
√

6)/7], (6.4.12)

Q/M ∈ ((3
√

6)/7,
√

9/8], (6.4.13)

Q/M ∈ [
√

9/8, ∞). (6.4.14)

Our approach consists in analyzing the conditions for the existence of circular
orbits by using the expressions for the angular momentum, Eq. (6.2.2), and
the energy, Eq. (6.2.3), of the particle together with the expressions for the ve-
locity obtained in Sec. 6.3. We consider separately the case ǫ > 0 in Secs. 6.4.1
and 6.4.2, and ǫ < 0 in Secs. 6.4.3 and 6.4.4.
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Figure 6.23: The charge parameters ǫl (black solid curve), ǫ̃− (gray solid curve), ǫ̃+ (dashed
curve), ˜̃ǫ− (dotted curve), and ˜̃ǫ+ (dotdashed curve) as functions of the charge–to–mass ratio

of the RN naked singularity. The special lines Q/M = 5/
(

2
√

6
)
≈ 1.02, Q/M = 3

√
6/7 ≈

1.05, and Q/M =
√

9/8 ≈ 1.06 are also plotted.

6.4.1 Case ǫ > 1

For ǫ > 0 the condition (6.3.12) implies in general that r > r∗ ≡ Q2/M.
Imposing this constraint on Eqs.(6.2.2) and (6.2.3), we obtain the following
results for timelike orbits. For ǫ > 1 and M < Q <

√
9/8M circular orbits

exist with angular momentum L = L+ in the interval r−γ < r < r+γ , while for

Q ≥
√

9/8M no circular orbits exist (see Fig. 6.24). Clearly, the energy and
angular momentum of circular orbits diverge as r approaches the limiting
orbits at r±γ . This means that charged test particles located in the region r−γ <

r < r+γ need to acquire an infinite amount of energy to reach the orbits at

r±γ . The energy of the states is always positive. A hypothetical accretion

disk would consist in this case of a charged ring of inner radius r−γ and outer

radius r+γ , surrounded by a disk of neutral particles. The boundary r = r+γ in
this case would be a lightlike hypersurface.

Since for ǫQ > 0 the Coulomb interaction is repulsive, the situation charac-
terized by the values for Q ≥

√
9/8M and ǫ > 1 corresponds to a repulsive

electromagnetic effect that cannot be balanced by the attractive gravitational
interaction. We note that the case Q ≥

√
9/8M and ǫ > 1 could be associated

to the realistic configuration of a positive ion or a positron in the background
of a RN naked singularity.
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Figure 6.24: The case ǫ > 1. The energy (black curve) and angular momentum (gray
curve) for a test particle with charge–to–mass ratio ǫ = 2 in a RN naked singularity with
Q = 1.06M. Circular orbits exist in the interval r−γ < r < r+γ , where r−γ = 1.04196M and

r+γ = 1.95804M.

6.4.2 Case 0 < ǫ < 1

It turns out that in this case it is necessary to consider separately each of the
four different regions for the ratio Q/M that follow from Fig. 6.23. Moreover,
in each region of Q/M it is also necessary to consider the value of ǫ for each
of the zones determined by the charge parameters ǫl , ǫ̃±, and ˜̃ǫ±, as shown
in Fig. 6.23. We analyzed all the resulting cases in detail and found the
values of the energy and angular momentum of charged test particles in all
the intervals where circular motion is allowed. We summarize the results as
follows.

There is always a minimum radius rmin at which circular motion is allowed.
We found that either rmin = r+s or rmin = r−γ . Usually, at the radius r+s the test
particle acquires a zero angular momentum so that a static observer at infin-
ity would consider the particle as being at rest. Furthermore, at the radius
r−γ the energy of the test particle diverges, indicating that the hypersurface

r = r−γ is lightlike. In the simplest case, circular orbits are allowed in the
infinite interval [rmin, ∞) so that, at any given radius greater than rmin, it is
always possible to have a charged test particle moving on a circular trajec-
tory. Sometimes, inside the infinite interval [rmin, ∞), there exists a lightlike
hypersurface situated at r+γ > rmin.

Another possible structure is that of a finite region filled with charged par-
ticles within the spatial interval (rmin = r−γ , rmax = r+γ ). This region is usually
surrounded by an empty finite region in which no motion is allowed. Outside
the empty region, we find a zone of allowed circular motion in which either
only neutral particles or neutral and charged particles can exist in circular
motion. Clearly, this spatial configuration formed by two separated regions
in which circular motion is allowed, could be used to build with test particles
an accretion disk of disconnected rings. A particular example of this case is
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Figure 6.25: Case: M < Q ≤ 5/(2
√

6)M and ǫ̃+ < ǫ ≤ ǫl . Parameter choice: Q =
1.01M and ǫ = 0.902. Then ǫl = 0.907, ǫ̃+ = 0.8963, r+s = 1.44942M, r−γ = 1.04196M,

r+γ = 1.95804M, r−l = 1.45192M, and r+l = 1.548077M. Circular orbits exist with angular

momentum L = L+ (gray curves) and energy E = E+ (black curves) in r−γ < r < r+s (upper

left plot); L = L± in r+s ≤ r < r−l (upper right plot) and r+l ≤ r < r+γ (bottom left plot);

L = L− in r ≥ r+γ (bottom right plot).

illustrated in Fig. 6.25

6.4.3 Case ǫ < −1

The contribution of the electromagnetic interaction in this case is always at-
tractive. Hence, the only repulsive force to balance the attractive effects of
the gravitational and Coulomb interactions can be generated only by the
RN naked singularity. This case therefore can be compared with the neu-
tral test particle motion as studied in [31, 32]. Then, it is convenient, as in the
case of a neutral test particle, to consider the two regions Q >

√
9/8M and

M < Q ≤
√

9/8M separately.

For ǫ < −1 and for Q >
√

9/8M circular orbits with L = L+ always exist
for r > 0 (in fact, however, one has to consider also the limit r > r∗ for the
existence of timelike trajectories). This case is illustrated in Fig. 6.26 where
the presence of orbits with negative energy states is evident.

For M < Q ≤
√

9/8M circular orbits exist with L = L+ in 0 < r < r−γ
and r > r+γ (see Fig. 6.27). We note that for neutral test particles in the region

M < Q ≤
√

9/8M, (stable) circular orbits are possible for r > r∗ = Q2/M. At
r = r∗, the angular momentum of the particle vanishes [31]. On the contrary,
charged test particles with ǫ < −1 can move along circular orbits also in
the region (0, r∗]. The value of the energy on circular orbits increases as r
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Figure 6.26: Case: ǫ < −1 and Q >
√

9/8M. Parameter choice: Q = 2M and ǫ = −2.
Circular orbits exist with angular momentum L = L+ (gray curve) and energy E = E+ (black
curve).
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Figure 6.27: Case: ǫ < −1 and M < Q ≤
√

9/8M. Parameter choice: Q = 1.01M and
ǫ = −2. Then, r−γ = 1.04196M and r+γ = 1.95804M. Circular orbits exist with angular

momentum L = L+ (gray curve) and energy E = E+ (black curve) in 0 < r < r−γ and r > r+γ .
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Figure 6.28: Case: M < Q ≤
√

9/8M and −M/Q < ǫ < 0. Parameter choice: Q = 1.05M
and ǫ = −0.2. Then r−γ = 1.28787M, r+γ = 1.71213M, and r−s = 1.03487M. Circular orbits

exist with angular momentum L = L+ (gray curve) and energy E = E+ (black curve) in
r−s < r < r−γ (left plot) and in r > r+γ (right plot). For r = r−s , L = 0.

approaches r = 0. However, the angular momentum, as seen by an observer
located at infinity, decreases as the radius of the orbit decreases. In the region
M < Q ≤

√
9/8M, two limiting orbits appear at r±γ , as in the neutral particle

case [31].

6.4.4 Case −1 < ǫ < 0

For this range of the ratio ǫ, it is also convenient to analyze separately the
two cases Q >

√
9/8M and M < Q ≤

√
9/8M. In each case it is necessary

to analyze the explicit value of ǫ with respect to the ratio M/Q. Several cases
arise in which we must find the regions where circular motion is allowed and
the value of the angular momentum and energy of the rotating charged test
particles.

We summarize the results in the following manner. There are two different
configurations for the regions in which circular motion of charged test par-
ticles is allowed. The first one arises in the case Q >

√
9/8M, and consists

in a continuous region that extends from a minimum radius rmin to infinity,
in principle. The explicit value of the minimum radius depends on the value
of ǫ and can be either r−s , r+s , or rmin = Q2/(2M). In general, we find that
particles standing on the minimum radius are characterized by L = 0, i. e.,
they are static with respect to a non-rotating observer located at infinity.

The second configuration appears for M < Q ≤
√

9/8M. It also extends
from rmin to infinity, but inside it there is a forbidden region delimited by the
radii r−γ and r+γ . The configuration is therefore composed of two disconnected
regions. At the minimum radius, test particles are characterized by L = 0. On
the boundaries (r±γ ) of the interior forbidden region only photons can stand
on circular orbits. A particular example of this case is presented in Fig. 6.28.
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Figure 6.29: The radius of the last stable circular orbit rlsco (gray curve) of a charged particle

with ratio ǫ = +7 in a RN naked singularity with ratio Q/M ∈ [1, 1.2]. The radii r∗ = Q2/M

and r = r±γ ≡ [3M ±
√

9M2 − 8Q2]/2 are also plotted. Circular orbits exist only in the

interval 1 < Q/M <
√

9/8. The shaded region is forbidden for timelike particles. Stable
orbits are located in the region r > rlsco.

6.4.5 Stability

To explore the stability properties of the circular motion of charged test par-
ticles in a RN naked singularity, it is necessary to investigate the equation
(6.2.7) or, equivalently, Eqs.(6.2.8), (6.2.8), and (6.2.9), considering the differ-
ent values for ǫ and Q/M > 1. We can distinguish two different cases, |ǫ| > 1
and 0 < |ǫ| < 1. Let us consider the case |ǫ| > 1. In particular, as it was
shown in Sec. 6.4.1, for ǫ > 1 and M < Q <

√
9/8M circular orbits exist with

L = L+ in the interval r−γ < r < r+γ whereas no circular orbits exist for ǫ > 1

and Q >
√

9/8M. For this particular case, a numerical analysis of condition
(6.2.7) leads to the conclusion that a circular orbit is stable only if its radius
r0 satisfies the condition r0 > rlsco, where rlsco is depicted in Fig. 6.29. We see
that in general the radius of the last stable circular orbit is located inside the
interval (r−γ , r+γ ). It then follows that the only stable region is determined by

the interval rlsco < r < r+γ .

Consider now the case ǫ < −1. The numerical investigation of the condi-
tion (6.2.7) for the last stable circular orbit shows that in this case there are two
solutions r±lsco such that r−lsco ≤ r+lsco, where the equality is valid for Q/M ≈ 1.72.
Moreover, for Q/M =

√
9/8 we obtain that r−lsco = r−γ = r+γ . This situation is

illustrated in Fig. 6.30. Stable orbits corresponds to points located outside the
region delimited by the curves r = r+lsco, r = r−lsco, and the axis Q/M = 1. On
the other hand, we found in Sec. 6.4.3 that for ǫ < −1 and 1 < Q/M ≤

√
9/8
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Figure 6.30: The radius of the last stable circular orbit r±lsco (black curves) of a charged
particle with ratio ǫ = −7 in a RN naked singularity with ratio Q/M ∈ [1, 1.8]. The radii
r∗, and r±γ are also plotted for comparison. In the shaded region no circular orbits can exist.

Stable circular orbits are situated outside the region with boundaries r+lsco, r−lsco, and the vertical
axis Q/M = 1.

circular orbits exist in the interval 0 < r < r−γ and r > r+γ . It then follows
that the region of stability corresponds in this case to two disconnected zones
determined by 0 < r < r−γ and r > r+lsco. Moreover, we established in Sec. 6.4.3

that for ǫ < −1 and
√

9/8 < Q/M circular orbits always exist for r > 0. Con-
sequently, in the interval

√
9/8 < Q/M . 1.72, the stable circular orbits are

located in the two disconnected regions defined by 0 < r < r−lsco and r > r+lsco.
Finally, for Q/M & 1.72 all the circular orbits are stable (see Fig. 6.30).

The case 0 < |ǫ| < 1 is much more complex, and needs to be described
for different subcases following the classification of orbital regions traced in
Sec. 6.4.2 for the case 0 < ǫ < 1, and in Sec. 6.4.4 for the case −1 < ǫ <

0. The results for the specific ratio ǫ = 0.5 are given in Fig. 6.31 and for
ǫ = −0.5 in Fig. 6.32. In general, we find that the results are similar to those
obtained for the case ǫ < −1. Indeed, the zone of stability consists of either
one connected region or two disconnected regions. The explicit value of the
radii that determine the boundaries of the stability regions depend on the
particular values of the ratio Q/M.
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Figure 6.31: The radius of the last stable circular orbit r±lsco (black and grey curves) of a
charged particle with ratio ǫ = 0.5 in a RN naked singularity with ratio Q/M ∈ [1, 1.1]. Also

plotted: r±γ ≡ [3M ±
√
(9M2 − 8Q2)]/2, r+s ≡ Q2

ǫ2Q2−M2

[√
ǫ2(ǫ2 − 1)(M2 − Q2)M(ǫ2 − 1)

]
,

r±l ≡ 3M
2 ± 1

2

√
9M2 − 8Q2 − Q2ǫ2, and r∗ = Q2/M. Regions of stability are: for Q >√

9/8M in r > rs, for (3
√

6/7)M < Q <
√

9/8M exist stable orbits in r−γ < r, for

(5/(2
√

6))M < Q < (3
√

6/7)M exist stable orbits in r−γ < r. For M < Q < (5/(2
√

6))M

stable orbits are located in r > r+lsco.
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Figure 6.32: The radius of the last stable circular orbit r±lsco (black and grey
curves) of a charged particle with ratio ǫ = −0.5 in a RN naked singularity

with ratio Q/M ∈ [1, 1.2]. Also plotted: r±γ ≡ [3M ±
√
(9M2 − 8Q2)]/2, r+s ≡

Q2

ǫ2Q2−M2

[√
ǫ2(ǫ2 − 1)(M2 − Q2)M(ǫ2 − 1)

]
, r±l ≡ 3M

2 ± 1
2

√
9M2 − 8Q2 − Q2ǫ2, and r∗ =

Q2/M. Shaded regions are forbidden. Regions of stability are: for Q > (
√

9/8)M stable
circular orbits exist in r+s < r < r−lsco, and r > r+lsco. For M < Q < (

√
9/8)M stable circular

orbits exist in r+s < r < r−γ , and r > r+γ .
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6 Motion of charged test particles in Reissner–Nordström spacetime

6.5 Velocity of test particles in a RN naked

singularity

In this section explore charged test particles in circular motion in a RN naked
singularity by using the tetrad formalism, as developed in Sec. 6.3 for the
black hole analysis. In Sec. 6.4, we studied the timelike circular motion in the
naked singularity case by analyzing directly the existence conditions for the
energy, Eq. (6.2.3), and the angular momentum, Eq. (6.2.2). Here we use the
formalism of “local proper linear velocity” as measured by an observer at-
tached to an orthonormal frame. The results are equivalent to those obtained
by using the expressions for the energy and angular momentum.

In Sec. 6.3, we showed that the linear velocity of a test particle in a RN
spacetime can be written as

ν±ǫ = νg

[
Λ ±

√
Λ2 − 1 + (ǫ/ǫ0)2

]1/2

, (6.5.1)

where

Λ = 1 −
ν2

g

2

(
ǫ

ǫ0

)2

, νg =

√
Mr − Q2

∆
, ǫ0 =

Mr − Q2

Q
√

∆
. (6.5.2)

Then, the conditions for the existence of timelike velocities are

Λ2 − 1 + (ǫ/ǫ0)
2 ≥ 0 , (6.5.3)

Λ ±
√

Λ2 − 1 + (ǫ/ǫ0)2 ≥ 0 , (6.5.4)

(ν±ǫ )2
< 1 . (6.5.5)

We first note that, in the case of a naked singularity, these conditions can be
satisfied only for r ≥ Q2/M.

For ǫ > 1 and ǫ < −1 the solutions are the geodesic velocities ν = ±ν+ǫ .
In fact, in this case, condition (6.5.4) with the minus sign is no more satisfied.
On the other hand, conditions (6.5.3), (6.5.4), and (6.5.5) imply that circular
timelike orbits exist for Q/M >

√
9/8 in the entire range r > Q2/M. For

1 < Q/M <
√

9/8 circular orbits are possible in r > Q2/M and r 6= r±γ ≡
[3M ±

√
9M2 − 8Q2]/2. Finally, for Q/M =

√
9/8 timelike circular orbits

exist for all r > Q2/M, except at r = (3/2)M. Moreover, the radii r = r±γ
correspond to photon orbits in the RN spacetime (see Fig. 6.33).

Consider now the case |ǫ| < 1. It is useful to introduce here the following
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notations:

r±l ≡ 3M

2
± 1

2

√
9M2 − 8Q2 − Q2ǫ2, (6.5.6)

ǫ̃± ≡ 1√
2Q

√
5M2 ± 4Q2 +

√
25M2 − 24Q2, (6.5.7)

and

r±s ≡ Q2

ǫ2Q2 − M2

[
M(ǫ2 − 1)±

√
ǫ2(ǫ2 − 1)(M2 − Q2)

]
. (6.5.8)

First, consider the case 0 < ǫ < 1. For ǫ > 0 condition (6.3.12) implies
that r > Q2/M. Applying this constraint on conditions (6.5.3) and (6.5.4), we
obtain the following results for timelike geodesics.

1. For 1 < Q/M ≤ 5/(2
√

6) the following subcases occur:

a) 0 < ǫ < ǫ̃− : Fig. 6.34a

The velocity ν = ±ν+ǫ exists in the range Q2/M < r ≤ r−l and

r ≥ r+l with r 6= r±γ , ν = ±ν−ǫ exists in the range r+s < r ≤ r−l and

r ≥ r+l .

b) ǫ̃− ≤ ǫ ≤ ǫ̃+ : Fig. 6.34b

The velocity ν = ±ν+ǫ exists in the range Q2/M < r < r−l and

r ≥ r+l with r 6= r±γ , ν = ±ν−ǫ exists in the range r ≥ r+l .

c) ǫ̃+ < ǫ < ǫl , : Fig. 6.34.c

The velocity ν = ±ν+ǫ exists in the range Q2/M < r ≤ r−l and

r ≥ r+l with r 6= r±γ , ν = ±ν−ǫ exists in the range r+s < r ≤ r−l and

r ≥ r+l .

d) ǫl ≤ ǫ < 1 : Fig. 6.34d

The solutions are the geodesic velocities ν = ±ν+ǫ in the range r >
Q2/M with r 6= r±γ . The solution ν = ±ν−ǫ exists for ǫl ≤ ǫ < M/Q

in the range r > r+s .

2. For 5/(2
√

6) < Q/M <
√

9/8 the following subcases occur:

a) 0 < ǫ < ǫl : Fig. 6.35b

The velocity ν = ±ν+ǫ exists in the range Q2/M < r ≤ r−l and

r > r+l with r 6= r±γ , ν = ±ν−ǫ exists in the range r+s < r ≤ r−l and
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Figure 6.33: The positive solution of the linear velocity ν+ǫ is plotted as a function of the
radial distance r/M for different values of the ratios Q/M and ǫ. The geodesic velocity νg

is also shown (dashed curve). Shaded region is forbidden. In (a) the parameter choice is
Q/M = 3 and ǫ = 2, with r∗ ≡ Q2/M = 9M. In (b) the parameter choice is Q/M = 2
and ǫ = 3, with r∗ ≡ Q2/M = 4M. In (c) the parameter choice is Q/M = 1.04 and ǫ = 2,

with r∗ ≡ Q2/M ≈ 1.08M, r+γ ≡ [3M +
√

9M2 − 8Q2]/2 ≈ 1.79M, and r−γ ≡ [3M −√
9M2 − 8Q2]/2 ≈ 1.201M. In (d) the parameter choice is Q/M =

√
9/8 and ǫ = 2, with

r∗ ≡ Q2/M = (9/8)M, r±γ ≡ [3M ±
√

9M2 − 8Q2]/2 = (3/2)M.

r ≥ r+l .

b) ǫl ≤ ǫ < 1 : Fig. 6.35a

The velocity ν = ±ν+ǫ exists in the range r > Q2/M, ν = ±ν−ǫ
exists in the range r > r+s .

3. Q/M ≥
√

9/8 : Figs. 6.36 and 6.37

The velocity ν = ±ν+ǫ exists in the range r > Q2/M for Q/M >
√

9/8
whereas for Q/M =

√
9/8 this is a solution in r/M > 9/8 with r/M 6=

3/2, ν = ±ν−ǫ exists for 0 < ǫ < M/Q in the range r > r+s .

The results for −1 < ǫ < 0 are summarized below.
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Figure 6.34: The positive solution of the linear velocity νǫ is plotted as a function of the
radial distance r/M for Q/M = 1.01 and different values of the ratio ǫ. In this case r+γ =

1.96M, r−γ = 1.042M with r∗ ≡ Q2/M = 1.02M, ǫ̃− = 0.31, ǫ̃+ = 0.9, ǫl ≈ 0.91. The geodesic
velocity νg is also shown (dashed curve). Shaded region is forbidden. In (a) the parameter

choice is ǫ = 0.2 with r+s = 1.05M, and r+l = 1.95M, r−l = 1.05M. In (b) the parameter choice

is ǫ = 0.5. Here r+s = 1.11M, and r+l = 1.88M, r−l = 1.12M. In (c) the parameter choice is

ǫ = 0.9. Here r+s = 1.11M, and r+l = 1.88M, r−l = 1.12M. In (d) the parameter choice is

ǫ = 0.95. Here r+s = 1.79M, and r±l do not exist.
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Figure 6.35: The positive solution of the linear velocity νǫ is plotted as a function of the
radial distance r/M for Q/M = 1.05 and different values of the ratio ǫ. In this case r+γ =

1.71M, r−γ = 1.29M with r∗ ≡ Q2/M ≈ 1.102M, ǫl ≈ 0.40. The geodesic velocity νg is also
shown (dashed curve). Shaded region is forbidden. In (a) the parameter choice is ǫ = 0.7.
Here r+s = 1.61M, and r±l are not defined. In (b) the parameter choice is ǫ = 0.2. Here

r+s = 1.2M, and r+l = 1.68M, r−l = 1.32M.
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Figure 6.36: The positive solution of the linear velocity νǫ is plotted as a function of the

radial distance r/M for Q/M =
√

9/8 and different values of the ratio ǫ. In this case r+γ =

r−γ = 3/2M with r∗ ≡ 9/8M, ǫl = 0. The geodesic velocity νg is also shown (dashed curve).

Shaded region is forbidden. In (a) the parameter choice is ǫ = 0.2 with r+s = 1.2M. In (b) the
parameter choice is ǫ = 0.7 with r+s = 1.72M.
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Figure 6.37: The positive solution of the linear velocity νǫ is plotted as a function of the
radial distance r/M for Q/M = 2 and different values of the ratio ǫ. In this case r∗ ≡
Q2/M ≈ 4M. The geodesic velocity νg is also shown (dashed curve). Shaded region is
forbidden. In (a) the parameter choice is ǫ = 0.7 with r+s = 1.48M. In (b) the parameter
choice is ǫ = 0.2 with r+s = 6.2M.

1. For 1 < Q/M ≤ 5/(2
√

6) the following subcases occur:

a) For −1 < ǫ ≤ −ǫl , the velocity ν = ±ν+ǫ exists in the range r >

Q2/M with r 6= r±γ , ν = ±ν−ǫ exists for −(M/Q) < ǫ ≤ −ǫl in the

range r > r+s (see Fig. 6.38a).

b) For −ǫl < ǫ < −ǫ̃+, the solution is ν = ±ν+ǫ in the range Q2/M <

r ≤ r−l and r ≥ r+l with r 6= r±γ , ν = ±ν−ǫ exists in the range

r+s < r ≤ r−l and r ≥ r+l (see Fig. 6.38b).

c) For −ǫ̃+ ≤ ǫ ≤ −ǫ̃−, the velocity ν = ±ν−ǫ exists in the range r ≥ r+l .

ν = ±ν+ǫ exists for −ǫ̃+ < ǫ < −ǫ̃− in the range (Q2/M) < r <

r+s , and r ≥ r+l with r 6= r±γ , and for ǫ = −ǫ̃± the velocity ν+ǫ
exists for Q2/M < r < r−l and r ≥ r+l with r 6= r±γ . Finally, for

Q = 5/(2
√

6)M and ǫ = −ǫ̃+, ν+ǫ exists for (Q2/M) < r < r−l ,

and r ≥ r+l (see Fig. 6.38c).

d) For −ǫ̃− < ǫ < 0, the solutions are the geodesic velocities ν = ±ν+ǫ
in the range (Q2/M) < r ≤ r−l and r ≥ r+l with r 6= r±γ . The

solution ν = ±ν−ǫ exists in r+s < r ≤ r−l and r ≥ r+l (see Fig.
6.38d).

2. For 5/(2
√

6) < Q/M <
√

9/8 the following subcases occur:
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a) For −1 < ǫ ≤ −ǫl , the velocity ν = ±ν+ǫ exists in the range r >

Q2/M with r 6= r±γ , ν = ±ν−ǫ exists for −(M/Q) < ǫ ≤ −ǫl in the

range r > r+s (see Fig. 6.39b).

b) For −ǫl ≤ ǫ < 0, the velocity ν = ±ν+ǫ exists in the range Q2/M <

r ≤ r−l and r ≥ r+l , r 6= r±γ , ν = ±ν−ǫ exists in the range r+s < r ≤ r−l
and r ≥ r+l (see Fig. 6.39a).

3. For Q/M ≥
√

9/8 the velocity ν = ±ν−ǫ exists for −(M/Q) < ǫ < 0
in the range r > r+s . ν = ±ν+ǫ is a solution for Q/M >

√
9/8 and

−1 < ǫ < 0 in r > Q2/M whereas for Q/M =
√

9/8 this is a solution
in r/M > 9/8 with r/M 6= 3/2 (see Figs. 6.40 and 6.41).

6.6 Remarks

In this work, we explored the motion of charged test particles along circular
orbits in the spacetime described by the Reissner–Nordström (RN) metric.
We performed a very detailed discussion of all the regions of the spacetime
where circular orbits are allowed, using as parameters the charge–to–mass
ratio Q/M of the source of gravity and the charge–to–mass ratio ǫ = q/µ of
the test particle. Depending on the value of Q/M, two major cases must be
considered: The black hole case, |Q/M| ≤ 1, and the naked singularity case,
|Q/M| > 1. Moreover, we found out that the two cases |ǫ| ≤ 1 and |ǫ| > 1
must also be investigated separately. Whereas the investigation of the motion
of charged test particles with |ǫ| > 1 can be carried out in a relatively simple
manner, the case with |ǫ| ≤ 1 is much more complex, because it is necessary
to consider various subcases which depend on the explicit value of ǫ in this
interval.

To perform the analysis of circular motion of charged test particles in this
gravitational field we use two different methods. The first one consists in
using constants of motion to reduce the equations of motion to a single first–
order differential equation for a particle moving in an effective potential. The
properties of this effective potential are then used to find the conditions under
which circular motion is possible. The second approach uses a local orthonor-
mal frame to introduce a “local proper linear velocity” for the test particle.
The conditions for this velocity to be timelike are then used to determine
the regions of space where circular orbits are allowed. The results of both
methods are equivalent and, in fact, for the sake of simplicity it is sometimes
convenient to use a combination of both approaches. In this work, we ana-
lyzed in detail the conditions for the existence of circular orbits and found all
the solutions for all the regions of space in the case of black holes and naked
singularities.
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Figure 6.38: The positive solution of the linear velocity νǫ is plotted as a function of the
radial distance r/M for Q/M = 1.01 and different values of the ratio ǫ. In this case r+γ =

1.96M, r−γ = 1.042M r∗ ≡ Q2/M = 1.02M, ǫ̃− = 0.31, ǫ̃+ = 0.9, and ǫl ≈ 0.91. The geodesic
velocity νg is also shown (dashed curve). Shaded region is forbidden. In (a) the parameter

choice is ǫ = −0.95. Here r+s = 1.79M, and r±l do not exist. In (b) the parameter choice is

ǫ = −0.9. Here r+s = 1.11M, r+l = 1.88M, and r−l = 1.12M. In (c) the parameter choice is

ǫ = −0.5. Here r+s = 1.11M, r+l = 1.88M, and r−l = 1.12M. In (d) the parameter choice is

ǫ = −0.2. Here r+s = 1.05M, r+l = 1.95M, and r−l = 1.05M.
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Figure 6.39: The positive solution of the linear velocity νǫ is plotted as a function of the
radial distance r/M for Q/M = 1.05 and different values of the ratio ǫ. In this case r+γ =

1.71M, r−γ = 1.29M, r∗ ≡ Q2/M ≈ 1.102M, and ǫl ≈ 0.40. The geodesic velocity νg is also
shown (dashed curve). Shaded region is forbidden. In (a) the parameter choice is ǫ = −0.2.
Here r+s = 1.2M, r+l = 1.68M, and r−l = 1.32M. In (b) the parameter choice is ǫ = −0.7.

Here r+s = 1.61M, and r±l are not defined.
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Figure 6.40: The positive solution of the linear velocity νǫ is plotted as a function of the

radial distance r/M for Q/M =
√

9/8 and different values of the ratio ǫ. In this case r+γ =

r−γ = 3/2M, r∗ ≡ 9/8M, and ǫl = 0. The geodesic velocity νg is also shown (dashed curve).

Shaded region is forbidden. In (a) the parameter choice is ǫ = −0.7 with r+s = 1.72M. In (b)
the parameter choice is ǫ = −0.2 with r+s = 1.2M.
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Figure 6.41: The positive solution of the linear velocity νǫ is plotted as a function of the
radial distance r/M for Q/M = 2 and different values of the ratio ǫ. In this case r∗ ≡
Q2/M ≈ 4M. The geodesic velocity νg is also shown (dashed curve). Shaded region is
forbidden. In (a) the parameter choice is ǫ = −0.2. Here r+s = 6.2M. In (b) the parameter
choice is ǫ = −0.7. Here r+s = 1.48M.

To formulate the main results of this work in a plausible manner, let us sup-
pose that an accretion disk around a RN gravitational source can be made of
test particles moving along circular orbits [68]. Then, in the case of black hole
we find two different types of accretion disks made of charged test particles.
The first type consists of a disk that begins at a minimum radius R and can
extend to infinity, in principle. In the second possible configuration, we find
a circular ring of charged particles with radii (rint, rext), surrounded by the
disk, i. e., with rext < R. For certain choices of the parameter ǫ the exterior
disk might be composed only of neutral particles. A study of the stability of
circular orbits shows that the second structure of a ring plus a disk is highly
unstable. This means that test particles in stable circular motion around RN
black holes can be put together to form only a single disk that can, in princi-
ple, extend to infinity.

In the case of RN naked singularities we find the same two types of ac-
cretion disks. The explicit values of the radii rmin, rext, and R depend on the
values of the ratios ǫ and Q/M, and differ significantly from the case of black
holes. In fact, we find that the case of naked singularities offers a much richer
combination of values of the charge–to–mass ratios for which it is possible to
find a structure composed of an interior ring plus an exterior disk. A study of
the stability of this specific situation shows that for certain quite general com-
binations of the parameters the configuration is stable. This result implies
that test particles in stable circular motion around RN naked singularities
can be put together to form either a single disk that can extend, in principle,
to infinity or a configuration of an interior ring with an exterior disk. This
is the main difference between black holes and naked singularities from the
viewpoint of these hypothetical accretion disks made of test particles.
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6 Motion of charged test particles in Reissner–Nordström spacetime

The question arises whether it is possible to generalize these results to
the case of more realistic accretion disks around more general gravitational
sources, taking into account, for instance, the rotation of the central body,
[69, 70]. It seems reasonable to expect that in the case of Kerr and Kerr-
Newman naked singularities, regions can be found where stable circular mo-
tion is not allowed so that an accretion disk around such an object would
exhibit a discontinuous structure. Indeed, some preliminary calculations of
circular geodesics in the field of rotating compact objects support this expec-
tation. Thus, we can conjecture that the discontinuities in the accretion disks
around naked singularities are a consequence of the intensity of the repulsive
gravity effects that characterize these speculative objects. Furthermore, it was
recently proposed that static compact objects with quadrupole moment can
be interpreted as describing the exterior gravitational field of naked singu-
larities [71, 72]. It would be interesting to test the above conjecture in this
relatively simple case in which rotation is absent. If the conjecture turns out
to be true, it would give us the possibility of distinguishing between black
holes and naked singularities by observing their accretion disks.
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7 Equatorial circular motion in
Kerr spacetime

7.1 Introduction

The Kerr spacetime describes the exterior gravitational field of a rotating
mass M with specific angular momentum a = J/M, where J is the total angu-
lar momentum of the gravitational source. In Boyer–Lindquist coordinates,
the Kerr metric has the form

ds2 = dt2 − ρ2

∆
dr2 − ρ2dθ2 − (r2 + a2) sin2 θdφ2 − 2M

ρ2
r(dt − a sin2 θdφ)2 ,

(7.1.1)
where

∆ ≡ r2 − 2Mr + a2, and ρ2 ≡ r2 + a2 cos2 θ . (7.1.2)

This metric is an axisymmetric, stationary (nonstatic) asymptotically flat solu-
tion of Einstein equations in vacuum. The redshift infinity surface and event
horizons are described respectively by the equations

gtt = 0, grr = 0 . (7.1.3)

Then, the solutions of these equations are respectively

r0
± = M ±

√
M2 − a2cos2θ , and r± = M ±

√
M2 − a2 . (7.1.4)

Considering that θ ∈ [0, π], the radii r0
± and r± exist when |a| ≤ M (Kerr

black hole); in particular, for |a| = M (extreme Kerr black hole) the two hori-
zons coincide, r+ = r− = M. The outer static limit is r0

+, it corresponds to the
outer boundary of the ergosphere.

A naked singularity case occurs when |a| > M (for more details about the
Kerr metric see, for instance, [21, 73, 74] and [75, 76, 77, 78]).

The most important limiting cases are the Schwarzschild metric which is
recovered for a = 0, and the Minkowski metric of special relativity for a =
M = 0. The Kerr metric in Boyer–Lindquist coordinates is singular when
ρ = 0 and when ∆ = 0. However, a calculation of the Kretschmann cur-
vature scalar reveals that a true curvature singularity occurs only for ρ = 0.
Therefore, the surface represented by r = 0 and θ = π/2 corresponds to an
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7 Equatorial circular motion in Kerr spacetime

intrinsic curvature singularity [79, 21, 73, 80].
In previous works [32, 31, 81], the motion of test particles along circular

orbits around static, spherically symmetric spacetimes was investigated in
detail. We are now interested in studying the more general case of a station-
ary, axisymmetric spacetimes. The study of the circular motion around com-
pact objects is of particular interest in the context of astrophysics. Indeed, an
infinitesimal thin disk of test particles traveling in circular orbits can be con-
sidered as an idealized model for an accretion disk of matter surrounding the
central body. Such an idealized model could be used, for instance, to estimate
the amount of energy released by matter being accreted by the central mass
[82]. In addition, one can ask the question whether this hypothetical accre-
tion disk carries information about the nature of the central compact object.
In a recent work [32, 31, 81], this question was answered positively. Indeed,
we found that the geometric structure of the infinitesimal thin disk around a
Reissner-Nordström compact object strongly depends on the mass-to-charge
ratio.

In the present work, we generalize our previous analysis and study the mo-
tion of test particles along circular orbits on the equatorial plane of the Kerr
spacetime. We are especially interested in studying the differences between
the gravitational field of black holes and naked singularities. Test particles
moving along circular orbits are particularly appropriate to measure the ef-
fects generated by naked singularities. For the sake of simplicity, we limit
ourselves to the case of equatorial trajectories because they are confined in
the equatorial geodesic plane. This is a consequence of the fact that the Kerr
solution is invariant under reflections with respect to the equatorial plane.
Non-equatorial geodesics present an additional difficulty because the corre-
sponding planes are not geodesic. This case will not be considered in the
present work.

7.2 Circular orbits

We consider the circular motion of a test particle of mass µ in the background
represented by the Kerr metric (7.1.1). We limit ourselves to the case of or-
bits situated on the equatorial plane only which are defined by means of the
conditions

θ = π/2, and
dθ

dτ
= 0 , (7.2.1)

where τ is the particle’s proper time. We note that for θ = π/2 the outer
boundary of the ergosphere Eq. (7.1.4) is r0

+ = 2M while r0
− = 0.

The tangent vector ua to a curve xα(τ) is uα = dxα/dτ = ẋα. The momen-
tum pα = µẋα of a particle with mass µ can be normalized so that gαβ ẋα ẋβ =
−k, where k = 0, 1,−1 for null, spacelike and timelike curves, respectively.

Since the metric is independent of φ and t, the covariant components pφ
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7.2 Circular orbits

and pt of the particle’s four–momentum are conserved along its geodesic.
Thus, we use the fact that the quantity

E ≡ −gαβξα
t pβ (7.2.2)

is a constant of motion, where ξt = ∂t is the Killing field representing station-
arity. In general, we may interpret E, for timelike geodesics, as representing
the total energy of the test particle for a particle coming from radial infinity,
as measured by a static observer at infinity. On the other hand, the rotational
Killing field ξφ = ∂φ yields the following constant of motion

L ≡ gαβξα
φ pβ . (7.2.3)

We interpret L as the angular momentum of the particle.

In this work, we analyze circular orbits involving a potential function V(r).
It represents that value of E/µ that makes r into a “turning point” (V = E/µ),
in other words, that value of E/µ at which the (radial) kinetic energy of the
particle vanishes [83]. The (positive) effective potential is

V = − B

2A
+

√
B2 − 4AC

2A
, (7.2.4)

where [79, 21, 73, 74, 80]

A ≡
(

r2 + a2
)2

− a2∆, (7.2.5)

B ≡ −2aL
(

r2 + a2 − ∆
)

, (7.2.6)

C ≡ a2L2 −
(

M2r2 + L2
)

∆ . (7.2.7)

The negative solution of the effective potential equation

V− ≡ − B

2A
−

√
B2 − 4AC

2A
(7.2.8)

can be studied by using the following symmetry

V(L) = −V−(−L). (7.2.9)

We can note that the potential function (7.2.4) is invariant under the mutual
transformation a → −a and L → −L. Therefore, we will limit our analysis to
the case of positive values of a for co–rotating (L > 0) and counter–rotating
orbits (L < 0).

The investigation of the motion of test particles in the spacetime (7.1.1) is
thus reduced to the study of motion in the effective potential V. We will focus
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on (timelike) circular orbits for which (see also [84])

ṙ = 0, V = E/µ, ∂V/∂r = 0. (7.2.10)

Moreover, we use the following notation for the angular momentum solu-
tions

L±
µM

≡

∣∣∣ a2

M2 ± 2 a
M

√
r
M + r2

M2

∣∣∣
√

r2

M2

(
r

M − 3
)
∓ 2 a

M

√
r3

M3

, (7.2.11)

and the corresponding energies

E
(+)
±
µ

≡ E(L±)
µ

=

(r5M)1/4

∣∣∣∣[a2+(r−2M)r]

(
a∓
√

r3
M

)∣∣∣∣
√
(r−3M)

√
r
M∓2a

+ 2arL±

r [r3 + a2(r + 2M)]
, (7.2.12)

and

E
(−)
±
µ

≡ E(−L±)
µ

=

(r5M)1/4

∣∣∣∣[a2+(r−2M)r]

(
a∓
√

r3
M

)∣∣∣∣
√
(r−3M)

√
r
M∓2a

− 2arL±

r [r3 + a2(r + 2M)]
, (7.2.13)

respectively. The investigation of the above expressions for the angular mo-
mentum and energy of the test particle for different values of the radial co-
ordinate allows us to extract physical information about the behavior of the
gravitational source. We mention for an analysis of the test particle motion in
Kerr spacetime for example [85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
99, 100, 101, 102, 103, 104, 105, 106].

7.3 Black holes

In this section we shall consider the black hole case 0 < a ≤ M. In the non-
extreme black hole case (0 < a < M), it is gtt > 0 for 0 < r < r0

− and r > r0
+.

Inside the interval r0
− < r < r0

+ the metric component gtt changes its sign.
Moreover, gtt vanishes for r = r0

± and 0 < cos2 θ ≤ 1, and also at r = 2M for
θ = π/2. The location of these hypersurfaces is such that r0

− < r− < r+ < r0
+.

The region r0
− < r < r0

+, where gtt < 0, is called ergoregion. In this region

the Killing vector ξa
t = (1, 0, 0, 0) becomes spacelike or gabξa

t ξb
t = gtt < 0.

This fact implies in particular that a static observer, i.e. an observer with four
velocity proportional to ξa

t so that θ̇ = ṙ = φ̇ = 0, cannot exist inside the
ergoregion; an observer inside this region is forced to move.

For the extreme black hole case (a = M) it holds r− = r+ = M. Then,
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gtt > 0 for 0 < r < r0
− and r > r0

+ when 0 ≤ cos2 θ < 1, and for 0 < r < M
and r > M when cos2 θ = 1; moreover, gtt = 0 at r = r0

± in the interval
0 ≤ cos2 θ < 1, and at r = M for cos2 θ = 1. The location of the special radii
is such that r0

− < r− = r+ < r0
+ for 0 ≤ cos2 θ < 1 and r0

− = r− = r+ = r0
+

for cos2 θ = 1.

To investigate the solutions of the conditions of circular motion given by
Eq. (7.2.10) it is convenient to introduce the following radii

ra ≡ 4M cos

[
1

6
arccos

[
−1 + 2

a2

M2

]]2

, (7.3.1)

rc2 ≡ 4M sin

[
1

6
arccos

[
1 − 2

a2

M2

]]2

, (7.3.2)

rγ ≡ 2M

(
1 + sin

[
1

3
arcsin

[
1 − 2

a2

M2

]])
, (7.3.3)

which have the two limiting cases

ra = rγ = 3M, rc2 = 0 for a = 0, (7.3.4)

and
ra = 4M, rc2 = rγ = M for a = M, (7.3.5)

The dependence of these radii from the specific angular momentum is shown
in Fig. 7.1. It is then possible to show that circular orbits can exist only for
r > rγ and that there are two regions with different values for the angular
momentum, namely

rγ < r ≤ ra, where L = L−, (7.3.6)

and
r > ra, where L = −L+, and L = L− . (7.3.7)

Moreover, in the extreme black hole case, a = M, the circular orbits are situ-
ated at

r = ra = 4M , (7.3.8)

with two different possible values for the angular momentum

L =
13

4
√

2
Mµ with E =

5

4
√

2
µ, and L = − 13

4
√

2
Mµ with E =

149

140
√

2
µ .

(7.3.9)

As for the first interval rγ < r ≤ ra, the behavior of the corresponding
energy and angular momentum is illustrated in Fig. 7.2. First we note that
the area covered by this region increases as the specific angular momentum
of the black hole increases. Whereas ra and rγ coincide and equal 3M for
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Figure 7.1: The outer horizon r+ (dashed curve), the inner horizon r− (dotted curve), and
ra (black curve), rc2 (gray curve), and rγ (thick black curve) are plotted as function of the
black hole intrinsic angular momentum a/M. The dotted dashed gray line represents the
outer boundary of the ergosphere r0

+ = 2M.

nonrotating black holes (a = 0), their maximum separation is reached in
the case of extreme black holes (a = M) for which rγ coincides with the
outer horizon radius. In the region r > ra, circular orbits are allowed with
different values of the angular momentum (the particular case with L = −L+

is illustrated in Fig. 7.3).
We see that in the gravitational field of a black hole with 0 < a < M, parti-

cles with angular momentum L = L− can exist in the entire region r > rγ. As
the radius rγ is approached the angular momentum L− and the correspond-

ing energy E
(+)
− = E(L−) diverge, indicating that the hypersurface r = rγ is

lightlike, i.e., it is the limiting orbit for timelike particles with L = L−. More-
over, particles with angular momentum L = −L+ can move along circular
orbits in the interval r > ra, and the limiting lightlike counter–rotating orbit

corresponds to r = ra where both L+ and the energy E
(−)
+ = E(−L+) diverge.
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Figure 7.2: The energy E
(+)
− ≡ E(L−) (upper plot) and the angular momentum L− (bottom

plot) of circular orbits in a rotating Kerr black hole with angular momentum 0 < a ≤ M, for

selected values of a/M in the interval r > rγ. For a 6= M the energy E
(+)
− is always positive

and diverges as r approaches rγ. The dotted dashed gray line represents the outer boundary

of the ergosphere r0
+ = 2M.
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Figure 7.3: The energy E
(−)
+ ≡ E(−L+) and angular momentum L = −L+ of circular orbits

in a Kerr black hole with angular momentum 0 < a ≤ M, for selected values of a/M in the

region r > ra. The energy E
(−)
+ is always positive and diverges as r approaches ra.
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Figure 7.4: The effective potential V/m for a neutral particle of mass µ in a Kerr black hole
with a/M = 0.5 is plotted as a function of r/M in the range [1.71, 10] for the radial coordinate
and in the range [−10, 10] for the angular momentum L/(µM). The outer horizon is situated

at r+ = (1 + 1/
√

2)M (see text). Circular orbits exist for r > 2 [1 + sin(π/18)] M ≈ 2.347M.
The solid curve represents the location of circular orbits (stable and unstable). Stable (un-
stable) circular orbits are minima (maxima) of the effective potential function. The last
stable circular orbits are represented by a point. The minima are located at r = 4.233M
with L = 2.903/(Mµ) and E = 0.918µ, and at r = 7.554M with L = −3.884/(Mµ) and
E = 0.955µ.

7.3.1 Stability

From the physical viewpoint it is important to find the minimum radius for
stable circular orbits which is determined by the inflection points of the effec-
tive potential function, i.e., by the condition

∂2V/∂2r = 0. (7.3.10)

The behavior of the effective potential (7.2.4) for a fixed value of a/M and
different values of the particle angular momentum L/(Mµ) is sketched in
Fig. 7.4. The radii of the last stable circular orbits are written as [80, 107]

r∓lsco = M

[
3 + Z2 ∓

√
(3 − Z1)(3 + Z1 + 2Z2)

]
, (7.3.11)
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ra (black curve), rc2 (gray curve), rγ (thick black curve), last stable circular orbits r+lsco (dot-

dashed black curve) and r−lsco (dotdashed gray curve) are plotted as functions of the black

hole intrinsic angular momentum a/M. The curves r+lsco and r−lsco represent the radius of
the last stable circular orbit for particles with angular momentum −L+ and L−, respectively.
Circular orbits with L = L− exist for r/M > rγ and with L = −L+ for r > ra. The line
ã ≈ 0.638285M is also plotted.The dotted dashed gray line represents the outer boundary of
the ergosphere r0

+ = 2M.

where

Z1 ≡ 1 +

(
1 − a2

M2

)1/3 [(
1 +

a

M

)1/3
+
(

1 − a

M

)1/3
]

, (7.3.12)

and

Z2 ≡
√

3
a2

M2
+ Z2

1 . (7.3.13)

In particular, for a = 0 we have that r∓lsco = 6M, and when a = M we obtain
r−lsco = M for co–rotating orbits and r+lsco = 9M for counter–rotating orbits
(see also Fig. 7.5). In general, the radii r+lsco and r−lsco correspond to the last
stable circular orbit of a test particle with angular momentum L+ and L−,
respectively.

In Fig. 7.6 the energy E±
lsco/µ = E(r±lsco)/µ and the angular momentum

L±
lsco/µ = L(r±lsco)/µ of the last stable circular orbits are plotted as functions

of the ratio a/M. One can see that

E+
lsco ≤ E−

lsco, and E+
lsco = E−

lsco for a = 0. (7.3.14)

Moreover, as the ratio a/M increases, the energy E+
lsco decreases and the en-
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Figure 7.6: The energy Elsco/µ and the angular momentum L±
lsco/(Mµ) of the last stable

circular orbit as functions of the ratio a/M ≤ 1 of a Kerr black hole.

ergy E−
lsco increases. Instead, the corresponding angular momenta of the test

particles decrease as the intrinsic angular momentum increases.
To classify the circular orbits in a Kerr black hole it is convenient to distin-

guish two different regions: The first one is a ∈ [0, ã[, where ã ≈ 0.638285M
is the value at which ra and r−lsco coincide, and the second one is a ∈]ã, 1[.

In the first region a ∈ [0, ã[, where ra < r−lsco, we see that there exist unstable
circular orbits with L = L− in the interval rγ < r < ra. Moreover, in the
interval ra < r < r−lsco there are unstable circular orbits with L = L− and

L = −L+. In r−lsco < r < r+lsco there are stable circular orbits with L = L− and

unstable orbits with L = −L+. Finally, in the region r > r+lsco there are stable
circular orbits with L = L− as well as with L = −L+.

Let us consider the second region a ∈]ã, 1[ where ra > r−lsco. We see that

in the interval rγ < r < r−lsco there are unstable circular orbits with L = L−.

Moreove, in r−lsco < r < ra there are stable orbits with L = L−. In the region

ra < r < r+lsco there are stable circular orbits with L = L− and unstable orbits

with L = −L+. Finally, for r > r+lsco there are stable circular orbits with
L = L− and L = −L+. The classification of circular orbits in this case is
summarized in Table 7.1.

A detailed analysis of the behavior of the energy, angular momentum and
effective potential of test particles is presented in Figs. 7.7 and 7.8 for a/M =
0.5 < ã, in Figs. 7.9 and 7.10 for a/M = 0.7 > ã, and finally in Figs. 7.11 and
7.12 for the limiting case of an extreme black hole a/M = 1.
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7 Equatorial circular motion in Kerr spacetime

The case 0 < a < M

Region Angular momentum Stability
]rγ, ra] L− r−lsco
]ra, ∞[ −L+ (L−) r+lsco (r−lsco)

0 < a < ã (ra < r−lsco)

]rγ, ra[ L− Unstable
]ra, r−lsco[ (L−, −L+) Unstable
]r−lsco, r+lsco[ L− (−L+) Stable (Unstable)
]r+lsco, ∞[ (L−, −L+) Stable

ã ≤ a < M (ra ≤ r−lsco)

]rγ, r−lsco[ L− Unstable
]r−lsco, ra[ L− Stable
]ra, r+lsco[ L− (−L+) Stable (Unstable)
]r+lsco, ∞[ (L−, −L+) Stable

Table 7.1: Classification of circular orbits of test particles in a Kerr black hole. Here ã ≈
0.638285M. For each region we present the value of the orbital angular momentum and the
stability property.
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Figure 7.7: The energy E/µ (left plot) and the angular momentum L/(µM) (right plot) of
circular orbits in a Kerr black hole with a = 0.5M as functions of the radial coordinate r/M.

The energy E
(−)
+ ≡ E(−L+) and the angular momentum −L+ are represented by thick black

curves, and the energy E
(+)
− ≡ E(L−) and the angular momentum L− by black curves. In

rγ < r < ra there are unstable circular orbits with L−. For ra < r < r−lsco there are unstable

circular orbits with L− and −L+. For r−lsco < r < r+lsco there are stable circular orbits with

L− and unstable with −L+, finally for r > r+lsco there are stable circular orbits with L− and

−L+. The radii r+ = 1.70711M, rγ = 2.3473M, ra = 3.53209M and r−lsco = 4.233M, and

r+lsco = 7.55458M are also plotted. It is evident that E(−L+) > E(L−). The dotted dashed

gray line represents the outer boundary of the ergosphere r0
+ = 2M.
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Figure 7.8: The effective potential V/µ of a Kerr black hole with a = 0.5M as a function of
r/M. The radii r+ = 1.70711M, rγ = 2.3473M, ra = 3.53209M, r−lsco = 4.233M, and r+lsco =
7.55458M are also plotted. The left upper plot shows the effective potential with orbital
angular momentum L = L− = 3.29806Mµ for which we find a minimum (stable orbit) at
r = 7.85256M with energy E−/µ = 0.942949 and a maximum (unstable orbit) at r = 3M with
E−/µ = 0.979181. The right upper plot corresponds to an effective potential with orbital
angular momentum L = L− = 2.90877µ (black curve) and L = −L+ = −6.45235Mµ (gray
curve). For L = L− there is a minimum (stable orbit) at r = 4.49925M with E− = 0.918487µ
and a maximum (unstable orbit) at r = 4M with E− = 0.918559µ. For L = −L+ there is

a maximum (unstable orbit) at r = 4M with E
(−)
+ = 1.23744µ. The bottom plot is for an

effective potential with orbital angular momentum L = L− = 4.09649µ (black curve) and
L = −L+ = −4.36042Mµ (gray curve). For L = L− there is a minimum (stable orbit)
at r = 14M with E− = 0.96609µ and a maximum (unstable orbit) at r = 2.65996M with
E− = 1.134µ. For L = −L+ there is a maximum (unstable orbit) at r = 5.07411M with

E
(−)
+ = 0.991686µ and a minimum (stable orbit) at r = 14M with E

(−)
+ = 0.968052µ. The

dotted dashed gray line represents the outer boundary of the ergosphere r0
+ = 2M.
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Figure 7.9: The energy E/µ (left plot) and the angular momentum L/(µM) (right plot)
of circular orbits in a Kerr black hole with a = 0.7M as functions of r/M. The energy
E−
+ ≡ E(−L+) and the angular momentum −L+ are represented by thick black curves,

and the energy E+
− ≡ E(L−) and the angular momentum L− by black curves. The radii

r+ = 1.54772M, rγ = 2.01333M, ra = 3.72535M, r−lsco = 3.39313M, and r+lsco = 8.14297M are
also plotted. The dotted dashed gray line represents the outer boundary of the ergosphere
r0
+ = 2M. In rγ < r < r−lsco there are unstable circular orbits with L−; in r−lsco < r < ra

there are stable orbits with L−; in ra < r < r+lsco there are stable circular orbits with L− and

unstable with −L+; finally, for r > r+lsco there are stable circular orbits with L− and −L+. It
is clear that E(−L+) > E(L−).
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Figure 7.10: The effective potential V/µ of a Kerr black hole spacetime with a = 0.7M as
function of r/M. The radii r+ = 1.54772M, rγ = 2.01333M, ra = 3.72535M, r−lsco = 3.39313M,

and r+lsco = 8.14297M are plotted. The left upper plot represents the effective potential with
orbital angular momentum L = L− = 2.61948Mµ for which we find a minimum (stable
orbit) at r = 3.9473M with E− = 0.900551µ, and a maximum (unstable orbit) at r = 3M
with E− = 0.901712µ. The right upper plot shows an effective potential with orbital angular
momentum L = L− = 2.59216Mµ for which there exists a minimum (stable orbit) at r =
3.6M with E− = 0.897167µ, and a maximum (unstable orbit) at r = 3M with E− = 0.897167µ.
The left bottom plot corresponds to effective potentials with orbital angular momenta L =
L− = 2.91563µ (black curve) and L = −L+ = −4.2694Mµ (gray curve). For L = L− there is
a minimum (stable orbit) at r = 6.M with E− = 0.925818µ, and a maximum (unstable orbit)
at r = 2.50052M with E− = 0.960213µ. For L = −L+ there is a maximum (unstable orbit) at

r = 6M with E
(−)
+ = 0.973034µ. The right bottom plot is for effective potentials with orbital

angular momenta L = L− = 4.05058µ (black curve) and L = −L+ = −4.42036Mµ (gray
curve). For L = L− there is a minimum (stable orbit) at r = 14M with E− = 0.965775µ, and
a maximum (unstable orbit) at r = 2.1819M with E− = 1.23283µ. For L = −L+ there is a

maximum (unstable orbit) at r = 5.6208M with E
(−)
+ = 0.98443µ, and a minimum (stable

orbit) at r = 14M with E
(−)
+ = 0.968527µ. The dotted dashed gray line represents the outer

boundary of the ergosphere r0
+ = 2M.
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Figure 7.11: The energy E/µ (left plot) and the angular momentum L/(µM) (right plot)
of circular orbits in an extreme Kerr black hole (a = M) as functions of the radial coordinate
r/M. The energy E(−L+) and the angular momentum −L+ are represented by thick black
curves, and the energy E(L−) and the angular momentum L− by black curves. The radii
r+ = rγ = M (dashed curve) and ra = 4M (black curve) are also plotted. There exist circular
orbits with L = L− in r > rγ. The energy E(L−) is always positive and decreases as r
approaches rγ. Circular orbits with L = −L+ exist also in r > r+. The energy E(−L+) is
always positive and increases as r approaches ra. It is evident that E(−L+) > E(L−).

To present the main result of our analysis in a plausible manner it is con-
venient to introduce the idea of a hypothetical accretion disk formed by test
particles on circular orbits around the central massive object. We consider
this model only in the region r > r0

+. The structure of such an accretion disk
depends explicitly on the stability properties of the test particles. In fact, as
mentioned above the radii r−lsco and r+lsco represent the last stable orbits for par-
ticles with angular momentum L = L− (corotating particles) and L = −L+

(counter-rotating particles), respectively. Then, in the disk contained within
the radii [r−lsco, r+lsco] only the corotating particles can move along stable trajec-
tories. If a counter-rotating particle is located inside this disk (this is possible
if the radius of the orbit is r > ra), its orbit is unstable and it must decay into
an orbit with radius r > r+lsco. Consequently, the outer disk with r > r+lsco can
be build of corotating and counter-rotating particles which are both stable in
this region. The size of the inner disk [r−lsco, r+lsco] depends on the value of the
intrinsic angular momentum of the black hole a; the maximum size is reached
in the case of an extreme black hole (a = M) with r+lsco − r−lsco = 8M whereas

for a = 0 the radii coincide r+lsco = r−lsco and the disk disappears (cf. Fig. 7.5).

7.4 Naked singularities

In the naked singularity case (a > M), it is gtt > 0 for 0 < r < r0
− and r > r0

+
when 0 ≤ cos2 θ < 1/a2, for r > 0 with r 6= r0

− when cos2 θ = 1/a2, and
finally for r > 0 when 1/a2 < cos2 θ ≤ 1. Moreover, gtt = 0 at r = 2M if
θ = π/2, at r = r0

± for 0 < cos2 θ < 1/a2, and at r = r0
− for cos2 θ = 1/a2. As

in the black hole case, in the region (r0
−, r0

+) the Killing vector ξa
t = (1, 0, 0, 0)

becomes spacelike. On the equatorial plane, θ = π/2, it is r0
+ = 2M and
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Figure 7.12: The effective potential V/µ of an extreme Kerr black hole for a test particle
with a fixed orbital angular momentum as function of r/M. The radii r+ = rγ = M (dashed
curve) and ra = 4M (black curve) are plotted. The dotted dashed gray line represents the
outer boundary of the ergosphere r0

+ = 2M. The left plot shows the effective potentials with
orbital angular momenta L = L− (black curve) and L = −L+ (gray curve). For L = L−
there is a minimum (stable orbit) at r = 5M with L− = 2.53075Mµ and E− = 0.906154µ.
For L = −L+ there is a maximum (unstable orbit) at r = 5M with −L+ = −5.79614Mµ and
E−
+ = 1.08576µ. There exist circular orbits with L = L− in the region r > rγ, and orbits with

L = −L+ in the region r > r+. The dotted dashed gray line represents the outer boundary
of the ergosphere r0

+ = 2M.

r0
− = 0. In this case, the timelike Killing vector becomes spacelike in the

region 0 < r < r0
+, for all a > M.

According to the results presented in Sec. 7.2, to explore the motion of test
particles along circular orbits we must solve the following equations

ṙ = 0, V = E/µ, ∂V/∂r = 0 (7.4.1)

for the effective potential (7.2.4) with a > M, taking into account that in this
case no horizons exist. It turns out that it is convenient to study separately

the range a ≥ 3
√

3/4M (see Sec. 7.4.1) and the range M < a < 3
√

3/4M
(see Sec. 7.4.2) for the values of the intrinsic angular momentum of the naked
singularity.

7.4.1 The case a ≥ (3
√

3/4)M

In this case we find that for all r > 0 there exist circular orbits with angular

momentum L = L− and energy E
(+)
− = E(L−). In Fig. 7.13 we illustrate the

behavior of the energy and angular momentum of test particles for this case.

An analysis of the effective potential shows that a second class of circular

orbits with L = −L+ and energy E
(−)
+ = E(−L+) can be found in the region
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Figure 7.13: Angular momentum and energy of test particles in a Kerr naked singularity

with a ≥ (3
√

3/4)M. The angular momentum L = L− (left plot) and the energy E
(+)
− ≡

E(L−) (right plot) of circular orbits are plotted as functions of r > 0 and a ≥ (3
√

3/4)M. The
particle’s energy is always positive. It is possible to note a region of minima for the energy
corresponding to the minima of L−.
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Figure 7.14: Angular momentum and energy of test particles in a Kerr naked singularity

with a ≥ (3
√

3/4)M. The angular momentum L = −L+ (left plot) and the energy E
(−)
+ ≡

E(−L+) (right plot) of circular orbits are plotted as functions of r > ra and a ≥ (3
√

3/4)M.
The particle’s energy is always positive. It is possible to note a region of minima for the
energy corresponding to the minima of −L+.

r > ra where

ra

M
≡ 2 +

1 +

(
2 a2

M2 − 1 + 2
√

a4

M4 − a2

M2

)2/3

(
2 a2

M2 − 1 + 2
√

a4

M4 − a2

M2

)1/3
. (7.4.2)

The expression for the energy and angular momentum of the test particles in
this region is depicted in Fig. 7.14.

The special radius ra and the angular momentum for this radius L(ra)/(µM)
increase as the intrinsic angular momentum of the naked singularity increases,
as shown in Fig. 7.15. Notice that we are using the same notation ra for the
radius (7.3.1) of a black hole and the radius (7.4.2) of a naked singularity. Al-
though these radii are different in their definitions, we use the same notation
because in the limiting case a = M they both have the same limiting value
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Figure 7.16: The energy of circular orbits in a Kerr naked singularity with source angular

momentum a ≥ (3
√

3/4)M is plotted in terms of the radial coordinate r/M for selected
values of a/M. The left plot corresponds to particles with L = L−, and the right plot is
particles with L = −L+. The energy is always positive and diverges as the limiting radius
is approached. The dotted dashed gray line represents the outer boundary of the ergosphere
r0
+ = 2M.

ra = 4M. This will turn out later on to be convenient when we compare the
results of black holes with those of naked singularities.

The energies E(L−) and E(−L+) for the two classes of test particles al-
lowed in this are compared in Fig. 7.16. For particles with angular momen-
tum L = L− we see that the energy diverges as the limiting value r → 0 is
approached. Similarly, for particles with L = −L+ the energy diverges as the
radius approaches the limiting value r → ra, indicating that the orbit located
at r = ra is lightlike.

We now study the stability of the test particles in this specific case. An
analysis of the turning points of the potential (7.2.4) indicates that the radius
of the last stable circular orbit for particles with L = L− (located in the region
r > 0) is given by

r̄lsco ≡ M

(
3 − Z2 +

√
(3 − Z1)(3 + Z1 − 2Z2)

)
, (7.4.3)

where Z1 and Z2 were defined in Eq. (7.3.12) and Eq. (7.3.13), respectively.
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Figure 7.17: Radius of the last stable circular orbits for test particles in a Kerr naked sin-

gularity with a ≥ 3
√

3
4 M. The dotted dashed gray line represents the outer boundary of the

ergosphere r0
+ = 2M. The radius r̄lsco (r+lsco) is the limiting minimum radius of stability for

particles with L = L− (L = −L+).

Moreover, for particles with L = −L+ located at r > ra there exists a mini-
mum radius r = r+lsco for the last stable circular orbit. The expression for r+lsco
is given in Eq. (7.3.11). The behavior of this limiting radii in terms of the in-
trinsic angular momentum of the naked singularity is depicted in Fig. 7.17. If
follows that both radii increase as the value of a/M increases.

It turns out that it is necessary to distinguish two different regions, namely

a/M ∈ [3
√

3/4, 9] and a/M ∈]9,+∞[.

The region a/M ∈ [3
√

3/4, 9]

In the first region a/M ∈ [3
√

3/4, 9] which is characterized by

r̄lsco < ra < r+lsco, and r̄lsco = ra for a ≈ 9M, (7.4.4)

there exist unstable circular orbits with L = L− in the interval 0 < r < r̄lsco,
and stable orbits with L = L− in the interval r̄lsco < r < ra. Moreover, in the
region ra < r < r+lsco there are stable orbits with angular momentum L = L−,

and unstable orbits with angular momentum L = −L+. Finally, for r > r+lsco
there are stable orbits with L = L− and L = −L+. In Fig. 7.18 we present a
summary of this case.

As a concrete example for this case we consider now the motion of test

particles around a naked singularity with a = 3
√

3
4 M. In this case, circular

orbits with orbital angular momentum L = L− exist in the range r > 0, and
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Figure 7.18: Orbits stability in a Kerr naked singularity with 3
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ferent radii of the last stable circular orbits rlsco are plotted in terms of the intrinsic angular
momentum a/M.
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Figure 7.19: The angular momentum and the energy of test particles in the field of a Kerr

naked singularity with a = 3
√

3/4M ≈ 1.30M are plotted as functions of the radial coor-
dinate r/M. The dots represent the last stable circular orbits; numbers close to the points
denote the energy V/µ of the last stable circular orbit. For r > ra ≈ 4.2592M there exist
circular orbits with angular momentum L = −L+, and for all r > 0 with L = L− (see text).
For r = 0.75M the particle has L = 0 and energy E ≈ 0.333M. The dotted dashed gray line
represents the outer boundary of the ergosphere r0

+ = 2M.

with L = −L+ in the range r > ra ≈ 4.259M. The energy and angular
momentum of these circular orbits are plotted in Figs. 7.19.

In Fig. 7.20 the effective potential is plotted for different values of the or-
bital angular momentum. In particular, an “orbit” with zero angular momen-
tum (L = 0) and energy E ≈ 0.333M exists for r = 0.75M (see also Sec. 7.4.3).

From the analysis of the effective potential it follows that the turning points
are located at r+lsco ≈ 9.828M where L+

lsco ≈ −4.421µM and V+
lsco ≈ 0.96µ.

Moreover, in the interval 0 < r < r−lsco the orbits with angular momentum

L = L− are unstable; in the interval r−lsco < r < ra the orbits with L = L− are

stable; and for ra < r < r+lsco we see that the orbits with L = L− are stable and

those with L = −L+ are unstable. Finally, in the range r > r+lsco, the orbits
with L = −L+ and L = L− are both stable.
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Figure 7.20: The effective potential of a naked singularity with a = 3
√

3
4 M for fixed values

of the particle angular momentum L/(Mµ). The dotted dashed gray line represents the
outer boundary of the ergosphere r0

+ = 2M. The radius ra is also plotted (see text). The dots
denote the critical points of the potential. Numbers close to the dots denote the energy V/µ
of the maxima and minima of the effective potential.

The region a
M ∈ ]9,+∞[

In the second region ( a & 9M) which is characterized by

ra < r̄lsco < r+lsco , (7.4.5)

there are unstable orbits with angular momentum L = L− in the interval
0 < r < ra and with L = L− and L = −L+ in the interval ra < r < r̄lsco.
Moreover, for r̄lsco < r < r+lsco there are stable orbits with L = L− and unstable

ones with L = −L+. Finally, for r > r+lsco there are stable orbits with both
L = L− and L = −L+. In Fig. 7.21 a schematic summary of this case is
presented.

As a concrete example of this case we now analyze the circular motion of
test particles around a naked singularity with a = 2M. In this case, circular
orbits with angular momentum L = L− exist in the entire range r > 0, and
with L = −L+ in the range r > ra ≈ 4.822M. The energy and the angular
momentum of the circular orbits are plotted in Figs. 7.22.

In Fig. 7.23, the effective potential of circular orbits is plotted for selected
values of the orbital angular momentum in terms of the radial distance. The
turning points of the effective potential are r+lsco ≈ 11.702M for which L+

lsco ≈
−4.814µM and V+

lsco ≈ 0.971µ, and r−lsco ≈ 1.263M with L−
lsco ≈ 0.645µM and

V−
lsco ≈ 0.687µ.

The distribution of circular orbits is as follows: In the interval 0 < r < r̄lsco

there exist unstable orbits with L = L− which become stable for r̄lsco < r <

ra; in the interval ra < r < r+lsco the orbits with L = L− are stable while

those with L = −L+ are unstable. In the outer region r > r+lsco orbits with
L = −L+ and L = L− are both stable. To illustrate the results of the analysis
of this case, we consider in the region r > r0

+ the model of an accretion disk
made of stable particles moving on circular orbits around the central naked
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Figure 7.21: Orbits stability in a Kerr naked singularity with a & 9M. The radii rlsco of the
last stable circular orbits are plotted as functions of the intrinsic angular momentum a/M.
The radius r = ra is also plotted.
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Figure 7.22: The angular momentum and the energy of circular orbits in a Kerr naked
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+ = 2M. The dots denote the position
of the last stable circular orbits, and the numbers close to the dots indicate the value of the
corresponding energy V/µ or angular momentum L/(Mµ). In the range r > ra ≈ 4.822M
there exist circular orbits with L = −L+, and in r > 0 with L = L− (see text).
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Figure 7.23: The effective potential of a naked singularity with a = 2M for fixed values
of the particle angular momentum L/(Mµ). The radius ra is also plotted (see text). The
dotted dashed gray line represents the outer boundary of the ergosphere r0

+ = 2M. The dots
represent the critical points of the potential. Numbers close to the dots indicate the energy
V/µ of the maxima and minima of the effective potential.

singularity. We find an accretion disk composed of an interior disk contained
within the radii [r̄lsco, r+lsco] in which stable particles with angular momentum
L = L− co-rotate with the central singularity. A second disk is located at
r > r+lsco and contains co-rotating particles with angular momentum L = L−
and counter-rotating particles with L = −L+. We see that the structure of
this accretion disk is similar to that found in Sec. 7.3 for black holes. The only
difference is that in the case of a naked singularity the interior disk situated
within the radii [r̄lsco, r+lsco] has a minimum size of r+lsco − r̄lsco > 8M, whereas
in the case of a black hole the size of the inner disk is always less than 8M
and disappears as a → 0.

7.4.2 The case M < a < (3
√

3/4)M

For this range of values of the intrinsic angular momentum of the naked
singularity we find that there are circular orbits with angular momentum
L = −L+ and energy E(−L+) only in the region r > ra. In Fig. 7.24 we
present the parameters for the circular orbits.

From the expression for the effective potential and the conditions for cir-
cular motion it follows that in this case two additional regions arise. Indeed,
in the intervals 0 < r < r̂− and r ≥ r̂+ there exist circular orbits with angu-
lar momentum L = L− and energy E(L−) (see Fig. 7.25). Moreover, in the
interval r̂− < r < r̂+ we observe circular orbits with angular momentum
L = −L− and energy E(−L−) (see Fig. 7.26), where

r̂± ≡ 1√
6


Σ ±

√
6
√

6a2M

Σ
− Σ2 − 6a2


 , (7.4.6)
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Figure 7.24: Circular motion around a naked singularity with M < a < (3
√

3/4)M. The

angular momentum L = −L+ (left plot) and the energy E
(−)
+ ≡ E(−L+) (right plot) for

circular orbits are plotted as functions of a in the range 1 < a/M < 3
√

3/4 and r in the range
r > ra. The particle energy is always positive with a region of minima corresponding to the
minima of −L+.
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Figure 7.25: Circular motion around a naked singularity with M < a < (3
√

3/4)M. The
angular momentum L = L− (left plot) and the energy E− ≡ E(L−) (right plot) of circular

orbits are plotted as functions of of a in the range 1 < a/M < 3
√

3/4 and r in the intervals
r > r̂+ and 0 < r < r̂−. The region r̂− < r < r̂+ is represented as a dark region. As
r/M approaches the singularity, the particle energy and angular momentum diverge. As
r/M approaches r̂− from the left and r̂+ from the right, the particle energy and angular
momentum decrease.
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Figure 7.26: Circular motion around a naked singularity with M < a < (3
√

3/4)M. The
angular momentum L = −L− (left plot) and the energy E−

− ≡ E(−L−) (right plot) of circular

orbits are plotted as functions of of a in the range 1 < a/M < 3
√

3/4 and of r in the interval
r̂− < r < r̂+. The black curves represent the radii r̂− and r̂+. The presence of negative values
for the particle energy is evident.

with

Σ =

√
4a4

σ1/3
+ σ1/3 − 2a2, (7.4.7)

and
σ =

(
27M2a4 − 8a6 + 3M

√
81M2a8 − 48a10

)
. (7.4.8)

The behavior of these special radii is illustrated in Fig. 7.27.

Notice that the energy of circular orbits E(−L+) in the interval 0 < r < r̂−
and in r ≥ r̂+ (see Fig. 7.28), and the energy E(L−) in the interval r > ra are
always positive (see Fig. 7.29). On the contrary, the energy E(−L−) of circular
orbits within the region r̂− < r < r̂+ can be negative. In particular, we see
that E(−L−) = 0 for a = ā, where

ā ≡ −(r − 2M)

√
r

M
, (7.4.9)

or for the orbital radii r = r̄1 and r = r̄2, where

r̄1

M
≡ 8

3
sin

(
1

6
arccos

[
1 − 27a2

16M2

])2

, (7.4.10)

and
r̄2

M
≡ 4

3

(
1 + sin

[
1

3
arcsin

[
1 − 27a2

16M2

]])
, (7.4.11)

which are the solutions of the equation a = ā.

We can see that E(−L−) < 0 for M < a <
√

32/27M in the interval r̄1 <

r < r̄2. Otherwise, for a >
√

32/27M, the energy E(−L−) is always strictly
positive. This behavior is illustrated in Fig. 7.30.
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(3
√

3/4)M and for r > ra. The energy E(−L+) is always strictly positive and increases as
the angular momentum a/M increases.

The stability of circular orbits is determined by the turning points of the
effective potential. For this case we find numerically two turning points r+lsco

and r̃−lsco with r̂− < r̃−lsco < r̂+ and r+lsco > ra (see Fig. 7.31), where

r̃−lsco ≡ 3 − Z2 −
√
(3 − Z1)(3 + Z1 − 2Z2) . (7.4.12)

The radii r+lsco and r̃−lsco correspond to the last stable circular orbits with an-
gular L = −L+ and L = −L− respectively. Then, the distribution of circular
orbits in the different regions is as follows:

• In the region 0 < r < r̂−, the orbits with L = L− are unstable.

• In the region r̂− < r < r̃−lsco, the orbits with L = −L− are unstable.

• In the region r̃−lsco < r < r̂+, the orbits with L = −L− are stable.

• In the region r̂+ < r < ra, the orbits with L = L− are stable.

• In the region ra < r < r+lsco, the orbits with L = −L+ are unstable and
those with L = L− are stable.

• In the region r > r+lsco, the orbits with L = −L+ and L = L− are stable.

The summary of this case is sketched in Fig. 7.32. As a concrete example,
we investigate in detail circular motion around a naked singularity with a =
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Figure 7.30: The angular momentum ā = −(r − 2M)
√

r/M is plotted as a function of
r. The energy vanishes, E(−L−) = 0, for a = ā, and is negative, E(−L−) < 0, for 1 <

a <
√

32/27M in the interval r̄1 < r < r̄2. For a >
√

32/27M the energy E(−L−) is always
strictly positive. For a naked singularity with momentum a = 1.02M the energy E(−L−) = 0
at r = 0.41M and r = 0.96M, and E(−L−) < 0 in 0.41M < r < 0.96M. For a =

√
32/27M the

energy E(−L−) = 0 at r = 2/3M, whereas E(−L−) > 0 for a = 1.1M. In the upper bottom
plot, the energy E(−L−) is plotted for selected values of a/M in the interval r̂− < r < r̂+.
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Figure 7.33: Angular momentum and energy of circular orbits in a Kerr naked singularity
with a = 1.1M. The dots denote the position of the last stable circular orbits, and the numbers
close to the dots indicate the value of the energy V/µ or the angular momentum of the last
stable circular orbits. In r > ra ≈ 4.088M, the particles have angular momentum L = −L+;
in 0 < r < r̂− ≈ 0.378M and r ≥ r̂+ ≈ 0.989M, there exist particles with L = L−; in
r̂− < r < r̂+, there exist particles with L = −L−.

1.1M. The radii that determine the distribution of test particles in this gravi-
tational field are: r̂− ≈ 0.378M, r̃−lsco ≈ 0.989M, r̂+ =≈ 0.989M, ra ≈ 4.088M,

and r+lsco =≈ 9.280M. In Fig. 7.33, we illustrate the behavior of the angular
momentum and the energy of circular orbits for this special case.

In Fig. 7.34, we show the behavior of the effective potential for some se-
lected values of the orbital angular momentum. The turning points of the
effective potential are located at r+lsco ≈ 9.280M, where L+

lsco ≈ −4.298µM

and V+
lsco ≈ 0.963µ, and at r̃−lsco ≈ 0.667M, where L−

lsco ≈ −0.354µM and

V−
lsco ≈ 0.028µ.
The essential results of our analysis can be described by using the model

of an accretion disk around the central naked singularity. Considering the
properties and positions of the different radii and the positions of the last sta-
ble circular orbits, we conclude that the stable accretion disk is composed of
three different disks. The internal disk is situated between the radii r̃−lsco and
r̂+ and is made of stable particles of counter-rotating particles with angular
momentum L = −L−. Particles situated on the boundary radius r̂+ turn out
to be characterized by a zero value of the angular momentum (cf. Sec. 7.4.3).
A second disk made of stable corotating particles with angular momentum
L = L− is situated in the region r̂+ < r < r+lsco. Finally, the exterior stable

disk is situated in the region r > r+lsco and contains corotating particles with
L = L− and counter-rotating particles with L = −L+.

803



7 Equatorial circular motion in Kerr spacetime

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

1.2

r�M

V
�Μ

L=1ΜM, a=1.1M

r-

r+

ra

1.09

0.62

0 5 10 15 20 25 30
-3

-2

-1

0

1

2

r�M
V
�Μ

L=-5MΜ a=1.1M

1.01

r-

r+

ra

0.97

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

r�M

V
�Μ

L=-0.1MΜ a=1.1 M

r- r+ ra

0.20

0.16

Figure 7.34: The effective potential of a naked singularity with a = 1.1M for fixed values
of the particle angular momentum L/(Mµ). The radii ra and r̂± are also plotted. The dots
denote the critical points of the potential. Numbers close to the dots indicate the energy V/µ
of the maxima and minima of the effective potential. The dotted dashed gray line represents
the outer boundary of the ergosphere r0

+ = 2M.
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Figure 7.35: The effective potential of a Kerr naked singularity with angular momentum
parameter a = 1.1M and and a = 2M is plotted for the particle orbital angular momentum
L/(Mµ) = 0 as a function of the radius r/M. The radii ra and r̂± are also plotted for both
cases (see text). The dots represent the critical points of the potential, and the numbers close
to the dots indicate the energy V/µ of the maxima and minima of the effective potential. In
the case a = 2M no extreme points are observed in the potential.

7.4.3 Orbits with zero angular momentum

An interesting phenomenon that occurs only in the gravitational field of naked
singularity is the existence of “circular orbits” with zero angular momentum,
as defined by the conditions

V = E/µ, V ′(r) = 0, L = 0 . (7.4.13)

This fact can be interpreted as a consequence of the repulsive gravity effects
that characterize the dynamics in the field of the naked singularity. For the re-
pulsive gravity effects in the Kerr spacetime see, for example, [108, 59]. From
the expression for the angular momentum derived in Sec. 7.2 one can show
that the solution (7.4.13) is allowed only for naked singularities with intrinsic

angular momentum within the interval 1 < a/M ≤ 3
√

3/4. Outside this

interval, i.e. for a/M > 3
√

3/4, no orbits exist with zero angular momen-
tum. The behavior of the corresponding effective potential is illustrated in
Fig. 7.35.

A further analysis shows that the particles with L = 0 are situated on the
radii r̂±, and that the radius r̂− corresponds to unstable particles while the
radius r̂+ is withing the region of stability. This situation is illustrated in
Fig. 7.36.

The analysis of the energy of test particles with L = 0 is presented in Fig.
7.37. For the stable particles that are situated on the radius r̂+ we can note that
the energy is always positive and finite. The maximum value of the energy is

reached at the ratio a/M = 3
√

3/4 and the minimum value with E(r̂+) → 0
corresponds to the limit of the extreme black hole a/M → 1.
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Figure 7.36: Location of particles with L = 0 in a Kerr naked singularity with 1 < a/M ≤
3
√

3/4. The picture plots the locus of the critical points of the effective potential V/µ with
(particle) angular momentum L/(Mµ) = 0. The radius of these “circular” orbits is plotted
as a function of the source angular momentum a/M. Numbers close to the dots indicate the
value of the energy V/µ.
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Figure 7.37: The energy particles with L = 0 in a naked singularity with 1 < a/M ≤
3
√

3/4. The orbits are located on the radii r = r̂+ (stable) and r = r̂− (unstable). The
energies E(r̂+) (black curve) and E(r̂−) (gray curve) are plotted as functions of the intrinsic

angular momentum a/M. It is possible to see that E(r̂+) < E(r̂−) for 1 < a/M < 3
√

3/4,

and E(r̂+) = E(r̂−) for a/M = 3
√

3/4.
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7.4.4 Summary of the naked singularity and black hole cases

In the investigation of the circular motion of test particles around a Kerr
naked singularity we found that it is necessary to analyze separately the two

regions a ≥ 3
√

3
4 M and M < a <

3
√

3
4 M. The distribution of orbits depends on

the position of the special radii r̂±, given by Eq. (7.4.6), ra, given by Eq. (7.4.2),
and the position of the last stable circular orbits r+lsco, as given in Eq.(7.3.11),

r̃−lsco in Eq. (7.4.12) and r̄lsco, as given in Eq.(7.4.3). Notice that although the

radius r̄lsco is the geometric continuation of the radius r̃−lsco for the interval

a/M > 3
√

3/4, their values are determined by different analytical expres-
sions as follows from Eqs.(7.3.11) and (7.4.3). The arrangement of these radii
in the interval 1 < a/M < 1.7 is depicted in Fig. 7.38.

The tables 7.2 and 7.3 summarize the distribution and stability properties
of test particles in circular motion in the field of a rotating naked singularity
for the two different regions of values of the intrinsic angular momentum.

For the sake of completeness, we show in Fig. 7.39 the behavior of the ener-
gies E+

lsco = E(r+lsco) and E−
lsco = E(r−lsco) and angular momenta L+

lsco = L(r+lsco)

and L−
lsco = L(r−lsco), for the last stable circular orbits in terms of the ratio a/M

of the naked singularity. Notice that, as expected from a physical viewpoint,
for a fixed value of the ratio a/M the energy of the exterior last stable circular
orbit E(r+lsco) is always smaller than the corresponding energy of the interior

particle E(r−lsco).
Our analysis of Kerr black holes and naked singularities shows that the

properties of circular orbits depend strongly on their radial distance with re-
spect to the central source. The critical radii that are found in the analysis
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7 Equatorial circular motion in Kerr spacetime

Case: M < a < (3
√

3/4)M

Region Angular momentum Stability
]0, r̂−[ L− r̃lsco

]r̂−, r̂+[ −L− r̃lsco

]r̂+, ∞[ L− r̃lsco

]ra, ∞[ −L+ r+lsco
]0, r̂−[ L− Unstable
]r̂−, r̃lsco[ −L− Unstable
]r̃lsco, r̂+[ −L− Stable
]r̂+, ra[ L− Stable
]ra, r+lsco[ L− (−L+) Stable (Unstable)
]r+lsco, ∞[ (L−, −L+) Stable

Table 7.2: Distribution and stability properties of circular orbits for a test particle in a Kerr

naked singularity with M < a < (3
√

3/4)M. For each region we present the value of the
orbital angular momentum of the particle as determined by Eq. (7.2.11).

Case: a ≥ (3
√

3/4)M

Region Angular momentum Stability
]0, ∞[ L− r̄lsco

]ra, ∞[ −L+ r+lsco

(3
√

3/4)M < a < 9M (r̄lsco < ra < r+lsco)

]0, r̄lsco[ L− Unstable
]r̄lsco, ra[ L− Stable
]ra, r+lsco[ L− (−L+) Stable (Unstable)
]r+lsco, ∞[ (L−, −L+) Stable

a ≥ 9M (ra < r̄lsco < r+lsco)

]0, ra[ L− Unstable
]ra, r̄lsco[ (L−,−L+) Unstable
]r̄lsco, r+lsco[ L− (−L+) Stable (Unstable)
]r+lsco, ∞[ (L−, −L+) Stable

Table 7.3: Distribution and stability properties of circular orbits for a test particle in a Kerr

naked singularity with a ≥ (3
√

3/4)M. For each region we present the value of the orbital
angular momentum of the particle as determined by Eq. (7.2.11).
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Figure 7.39: Behavior of the Elsco/µ and the angular momentum for the last stable circular
orbits as functions of the intrinsic angular momentum of the naked singularity.
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7.5 Remarks

of the conditions for circular motion determine the angular momentum and
the energy of the test particles. The arrangement of those special radii and
the positions of the last stable circular orbits is depicted in Fig. 7.40 for the
relevant ranges of the ratio a/M.

The radii ra, rγ, r̂+, and r̂− determine the angular momentum and direction
of rotation of test particles at a given distance from the central source. In
addition, the radii r±lsco determine the position of the last stable circular orbits
with a given angular momentum of the test particle.

If we imagine an infinitesimal thin disk made of test particles in circular
orbits around the central compact object, the above results show that the ge-
ometric structure of the disk is sufficient to distinguish between black holes
and naked singularities. For such hypothetical disk to be a meaningful ap-
proximation of a physically realizable disk, it is necessary that the individual
particle orbits be stable with respect to infinitesimal perturbations. In the
case of radial perturbations, stability is guaranteed as a consequence of the
fact that the disk is made of stable particles in circular motion, as described
above. As for perturbations out of the equatorial plane, the analysis of sta-
bility has been performed by using the geodesic equations [109], the phase
space method [110], and the Rayleigh criterion [111, 112]. Although the last
method has been applied only to static central sources, the generalization
to include rotating sources seems to be straightforward. All those methods
show that equatorial circular orbits around a Kerr black hole are stable under
out-of-equatorial-plane perturbations as long as the angular momentum per
unit mass of the test particles increases monotonically as the distance to the
axis of symmetry increases. A complementary analysis must be performed
in the case of naked singularities; however, a brief inspection of the analyti-
cal results obtained by using the phase space method seems to indicate that
the stability does not depend drastically on the mass-to-angular-momentum
ratio of the central body. In general, one can expect that the stability with
respect to radial and out-of-equatorial-plane perturbations depends on the
ratio of source rotation to particle angular momentum.

7.5 Remarks

In this work, we investigated the circular motion of test particles around a ro-
tating central mass whose gravitational field is described by the Kerr space-
time. We limit ourselves to the study of circular orbits situated on the equa-
torial plane θ = π/2. First, we derive the conditions for the existence of
circular orbits by using the fact the geodesic motion in this case can be re-
duced to the motion of test particles in an effective potential. In this pro-
cedure, two constants of motion arise, E and L, which are interpreted as the
energy and the angular momentum of the test particles, respectively. We con-
centrate on the analysis of the conditions for the existence of circular orbits
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7.5 Remarks

and their consequences for the values of the energy and angular momentum
of the test particles. Our analysis covers completely the range of values of
the intrinsic angular momentum of the central mass, including black holes
and naked singularities. We find all the regions of the equatorial plane where
circular motion is allowed and analyze the behavior of the energy and the an-
gular momentum of the test particles in those regions. Moreover, the stability
properties of all the allowed circular orbits was investigated in detail.

For our analysis we consider separately the case of black holes with ratio
a/M ≤ 1 and naked singularities a/M > 1, where M is the mass and a
is the specific angular momentum J/M of the central body. Moreover, in
the case of naked singularities it turns out that the physical properties of the
circular motion depend on the value of the ratio a/M so that it is necessary

to explore two different ranges: 1 < a/M < 3
√

3/4 and a/M > 3
√

3/4. The
essential part of our results can be formulated in a plausible manner by using
the model of an accretion disk made of stable test particles which are rotating
around the central mass.

In the case of a black hole (a/M ≤ 1), we find that the accretion disk
is composed of an interior disk situated within the radii [r−lsco, r+lsco] and an

exterior disk in the region r > r+lsco, where r±lsco represent the radius of the last
stable circular orbit with angular momentum L = ∓L±; moreover, the value
of L± depends on the radius r of the circular orbit and on the ratio a/M of the
central body [cf. Eq.(7.2.11)]. A similar accretion disk is found around naked

singularities with a/M > 3
√

3/4. The only difference is that in the case of
a naked singularity the interior disk, situated within the radii [r̄−lsco, r+lsco], has

a minimum size of r+lsco − r̄−lsco > 8M, whereas in the case of a black hole the
size of the inner disk is always less than 8M and disappears as a → 0.

For naked singularities in the range 1 < a/M ≤ 3
√

3/4 we find that the
stable accretion disk is composed of three different disks. The internal disk is
situated between the radii r̃−lsco and r̂+ < r+lsco and is made of stable counter-
rotating particles with angular momentum L = −L−. The radius r̂+ corre-
sponds to circular orbits with zero angular momentum (V = E/µ, V ′(r) =
0, L = 0). A second disk made of stable corotating particles with angular mo-
mentum L = L− is situated in the region r̂+ < r < r+lsco. Finally, the exterior

stable disk is situated in the region r > r+lsco and contains corotating particles
with L = L− and counter-rotating particles with L = −L+. We conclude that
the main difference between a rotating black hole and a rotating naked sin-
gularity consists in the different geometric structure of their accretion disks.

The study of the dynamics of test particles around compact rotating objects
is surely interesting from the point of view of the astrophysical phenomenol-
ogy. However, an immediate application of this study will be in the physics
of the accretion disks as observed around astrophysical rotating objects (see
[113, 114, 115] and also [117, 108, 118, 119], for the problem concerning the
extended theories of gravity see for example [120]). The matter constituents,
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7 Equatorial circular motion in Kerr spacetime

plasma elements, are the material of the electromagnetic jets as seen in the X–
rays and γ–ray emissions. In this respect, a detailed and proper description
of the test particle dynamics is the first step towards the construction of a re-
alistic model for accretion disks around Kerr sources (see [121, 108, 122, 123],
and also [124] and [125]) .

In this work, we also explored the physics of naked singularities (see also
[32, 31, 60, 81]). As no naked singularity has been yet observed and further-
more the existence of these objects is still a subject under intensive theoretical
debate, the analysis of the dynamical properties of these objects is clearly
important either for a formalization of a complete theoretical picture of the
physical features of these solutions, or for observational issues [126, 127],
[128, 129, 130, 131] see also [132, 34]. We expect to generalize this work to
include the physical contribution of a charged source, therefore, exploring
the Kerr–Newman metric which properly describes the spacetime of a rotat-
ing, electrically charged, compact object in general relativity [83].
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8 On the search for interior
solutions

It is well known that Newtonian theory of gravitation provides an adequate
description of the interior and exterior gravitational field of conventional as-
trophysical objects. Indeed, the expansion of the gravitational potential in
terms of multopole moments turned out to be the cornerstone to understand
the and solve the corresponding field equations.

On the other hand, the discovery of exotic compact objects such as quasars
and pulsars together with the possibility of continued gravitational collapse
to a black hole points to the importance of relativistic gravitation in astro-
physics. Moreover, advances in space exploration and the development of
modern measuring techniques have made it necessary to take relativistic ef-
fects into account even in the Solar system. It is therefore of importance and
interest to describe the relativistic gravitational fields of astrophysical com-
pact objects in terms of their multipole moments, in close analogy with the
Newtonian theory, taking into account their rotation and their internal struc-
ture.

In this context, the first exterior solution with only a monopole moment
was discovered by Schwarzschild [133], soon after the formulation of Ein-
stein’s theory of gravity. In 1917, Weyl [4] showed that the problem of finding
static axisymmetric vacuum solutions can generically be reduced to a single
linear differential equation whose general solution can be represented as an
infinite series. The explicit form of this solution resembles the correspond-
ing solution in Newtonian’s gravity, indicating the possibility of describing
the gravitational field by means of multipole moments. In 1918, Lense and
Thirring [134] discovered an approximate exterior solution which, apart from
the mass monopole, contains an additional parameter that can be interpreted
as representing the angular momentum of the massive body. From this so-
lution it became clear that, in Einstein’s relativistic theory, rotation gener-
ates a gravitational field that leads to the dragging of inertial frames (Lense-
Thirring effect). This is the so–called gravitomagnetic field which is of es-
pecial importance in the case of rapidly rotating compact objects. The case
of a static axisymmetric solution with monopole and quadrupole moment
was analyzed in 1959 by Erez and Rosen [9] by using spheroidal coordi-
nates which are specially adapted to describe the gravitational field of non-
spherically symmetric bodies. The exact exterior solution which considers
arbitrary values for the angular momentum was found by Kerr only in 1963.
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8 On the search for interior solutions

The problem of finding exact solutions changed dramatically after Ernst [2]
discovered in 1968 a new representation of the field equations for station-
ary axisymmetric vacuum solutions. In fact, this new representation was the
starting point to investigate the Lie symmetries of the field equations. To-
day, it is known that for this special case the field equations are completely
integrable and solutions can be obtained by using the modern solution gen-
erating techniques [12]. In this work, we will analyze a particular class of
solutions, derived by Quevedo and Mashhoon [136] in 1991, which in the
most general case contains infinite sets of gravitational and electromagnetic
multipole moments. Hereafter this solution will be denoted as the QM solu-
tion.

As for the interior gravitational field, the situation is more complicated.
There exists in the literature a reasonable number of interior spherically sym-
metric solutions which can be matched with the exterior Schwarzschild met-
ric. Nevertheless, a major problem of classical general relativity consists in
finding a physically reasonable interior solution for the exterior Kerr metric.
Although it is possible to match numerically the Kerr solution with the inte-
rior field of an infinitely tiny rotating disk of dust, such a hypothetical system
does not seem to be of relevance to describe astrophysical compact objects. It
is now widely believed that the Kerr solution is not appropriate to describe
the exterior field of rapidly rotating compact objects. Indeed, the Kerr metric
takes into account the total mass and the angular momentum of the body.
However, the moment of inertia is an additional characteristic of any realistic
body which should be considered in order to correctly describe the gravita-
tional field. As a consequence, the multipole moments of the field created by
a rapidly rotating compact object are different from the multipole moments
of the Kerr metric. For this reason a solution with arbitrary sets of multipole
moments, such as the QM solution, can be used to describe the exterior field
of arbitrarily rotating mass distributions.

In the case of slowly rotating compact objects it is possible to find approx-
imate interior solutions with physically meaningful energy-momentum ten-
sors and state equations. Because of its physical importance, we will study
the Hartle-Thorne [138, 139] interior solution which can be coupled to an ap-
proximate exterior metric. Hereafter this solution will be denoted as the HT
solution. One of the most important characteristics of this family of solutions
is that the corresponding equation of state has been constructed using realis-
tic models for the internal structure of relativistic stars. Semi-analytical and
numerical generalizations of the HT metrics with more sophisticated equa-
tions of state have been proposed by different authors. A comprehensive
review of these solutions is given in [137]. In all these cases, however, it is as-
sumed that the multipole moments (quadrupole and octupole) are relatively
small and that the rotation is slow.

To study the physical properties of solutions of Einstein’s equations, Fock
[141] proposed an alternative method in which the parameters entering the
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8.1 The Hartle-Thorne metrics

exterior metric are derived by using physical models for the internal struc-
ture of the body. In this manner, the significance of the exterior parameters
become more plausible and the possibility appear of determining certain as-
pects of the interior structure of the object by using observations performed
in the exterior region of the body. Fock’s metric in its first-order approxima-
tion was recently generalized in 1985 by Abdildin [142] to include the case of
a rotating object.

8.1 The Hartle-Thorne metrics

To second order in the angular velocity, the structure of compact objects can
be approximately described by the mass and quadrupole moments. An im-
portant consequence of this approximation is that the equilibrium equations
reduce to a set of ordinary differential equations. Hartle and Thorne [138, 139]
explored the gravitational field of rotating stars in this slow rotation approx-
imation. This formalism can be applied in most compact objects including
pulsars with millisecond rotational periods, but it shows large discrepancies
in the case of rapidly rotating relativistic objects near the mass-shedding limit
[137], i. e., when the angular velocity of the object reaches the angular veloc-
ity of a particle in a circular Keplerian orbit at the equator. An additional
property of this formalism is that it can be used to match the interior solution
with an approximate exterior solution. In the following subsections we will
present the interior and exterior metric and introduce notations which will
be used throughout the paper.

If a compact object is rotating slowly, the calculation of its equilibrium
properties reduces drastically because it can be considered as a linear per-
turbation of an already-known non-rotating configuration. This is the main
idea of Hartle’s formalism [138]. To simplify the computation the following
conditions are assumed to be satisfied.

1) There exists an one-parameter equation of state. The matter in equilibrium
configuration is assumed to satisfy a one-parameter equation of state, P =
P(E), where P is the pressure and E is the density of total mass-energy.

2) Axial and reflection symmetry. The configuration is symmetric with re-
spect to an arbitrary axis which can be taken as the rotation axis. Further-
more, the rotating object should be invariant with respect to reflections about
a plane perpendicular to the axis of rotation.

3) Uniform rotation. Only uniformly rotating configurations were consid-
ered. It was shown previously that configurations which minimize the total
mass-energy (e.g., all stable configurations) must rotate uniformly [145].

4) Slow rotation. This means that angular velocities Ω are small enough so
that the fractional changes in pressure, energy density and gravitational field
due to the rotation are all less than unity, i.e.
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8 On the search for interior solutions

Ω2 ≪
( c

R

)2 GM

c2R
(8.1.1)

where M is the mass and R is the radius of the non-rotating configuration.
The above condition is equivalent to the physical requirement Ω ≪ c/R.

When the equilibrium configuration described above is set into slow ro-
tation, the geometry of space-time around it and its interior distribution of
stress-energy are changed. With an appropriate choice of coordinates, the
perturbed geometry is described by

ds2 = eν [1 + 2(h0 + h2P2)] dt2 − [1 + 2(m0 + m2P2)/(R − 2M′)]
1 − 2M′/R

dR2−

−R2 [1 + 2(v2 − h2)P2]
[

dΘ2 + sin2 Θ(dφ − ωdt)2
]
+ O(Ω3)

(8.1.2)

Here M′ is the mass of non-rotating star, P2 = P2(cos Θ) is the Legendre
polynomial of second order, ω is “the angular velocity of the local inertial
frame” which is the function of R and is proportional to the star’s angular
velocity Ω, and h0, h2, m0, m2, v2 are all functions of R that are proportional to
Ω2.

In the above coordinate system the fluid inside the star moves with the
4-velocity appropriate to uniform and rigid rotation [140], of which the con-
travariant components are

ut = (gtt + 2Ωgtφ + Ω2gφφ)
−1/2,

uφ = Ωut, uR = uΘ = 0. (8.1.3)

The quantity
ω̄ ≡ Ω − ω, (8.1.4)

which appears in the expression for ut, is the angular velocity of the fluid
relative to the local inertial frame. It plays a fundamental role in the equations
of structure below. The density of mass-energy and pressure of the fluid are
affected by rotation because the rotation deforms the star. In the interior of
the star at given (R, Θ), in a reference frame that is momentarily moving with
the fluid, the pressure is

P ≡ P + (E + P)(p∗0 + p∗2 P2) = P + ∆P; (8.1.5)

the density of mass-energy is

E ≡ E + (E + P)(dE/dP)(p∗0 + p∗2P2) = E + ∆E. (8.1.6)

Here, p∗0 and p∗2 are dimensionless functions of R, proportional to Ω2, which
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8.1 The Hartle-Thorne metrics

describe the pressure perturbation; all other parameters were defined above.
The stress-energy tensor for the fluid in the rotating star is

Tν
µ = (E+ P)uµuν − Pδν

µ. (8.1.7)

The rotational perturbations of the star’s structure are described by the func-
tions ω̄, h0, m0, p∗0 , h2, m2, v2, p∗2 . These functions are calculated from Einstein’s
field equations (for details see [138, 139]).

The HT metric describing the exterior field of a slowly rotating slightly
deformed object is given by

ds2 =

(
1 − 2M

R

)[
1 + 2k1P2(cos Θ) + 2

(
1 − 2M

R

)−1 J2

R4
(2 cos2 Θ − 1)

]
dt2

−
(

1 − 2M

R

)−1
[

1 − 2k2P2(cos Θ)− 2

(
1 − 2M

R

)−1 J2

R4

]
dR2

−R2[1 − 2k3P2(cos Θ)](dΘ2 + sin2 Θdφ2) + 4
J

R
sin2 Θdtdφ

(8.1.8)

where

k1 =
J2

MR3

(
1 +

M

R

)
+

5

8

Q − J2/M

M3
Q2

2

(
R

M
− 1

)
,

k2 = k1 −
6J2

R4
,

k3 = k1 +
J2

R4
+

5

4

Q − J2/M

M2R

(
1 − 2M

R

)−1/2

Q1
2

(
R

M
− 1

)
,

and

Q1
2(x) = (x2 − 1)1/2

[
3x

2
ln

x + 1

x − 1
− 3x2 − 2

x2 − 1

]
, (8.1.9)

Q2
2(x) = (x2 − 1)

[
3

2
ln

x + 1

x − 1
− 3x3 − 5x

(x2 − 1)2

]
, (8.1.10)

are the associated Legendre functions of the second kind. The constants M, J
and Q are related to the total mass, angular momentum and mass quadrupole
moment of the rotating star, respectively. The total mass of a rotating config-
uration is defined as M = M′ + δM, where M′ is the mass of non-rotating
configuration and δM is the change in mass of the rotating from the non-
rotating configuration with the same central density. It should be stressed
that in the terms involving J2 and Q the total mass M can be substituted by
M′ since δM is already a second order term in angular velocity. This form of
the metric corrects some misprints of the original paper by Hartle and Thorne
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8 On the search for interior solutions

[139] (see also [116] and [117]).
In general the HT metric represents an approximate vacuum solution, ac-

curate to second order in the angular momentum J and to first order in the
quadrupole parameter Q. In the case of ordinary stars, such as the Sun,
considering the gravitational constant G and the speed of light c, the met-
ric (8.1.8) can be further simplified due to the smallness of the parameters:

GMSun

c2RSun
≈ 10−6,

GJSun

c3R2
Sun

≈ 10−12,
GQSun

c2R3
Sun

≈ 10−12. (8.1.11)

There are two ways to incorporate this limit into the metric (8.1.8): either
as R → ∞ or as c → ∞. As for the first case, it is necessary that R be a
well-defined radial coordinate, whereas the second one can be carried out
in an invariant manner only by using the frame theory developed sometime
ago by Ehlers [146]. The result of the limit R → ∞ has been presented in
[139] and the corresponding metric describes the gravitational field of the
Sun with an accuracy of one part in 1012. To calculate the limit c → ∞ in the
Ehlers invariant formalism, it is necessary to perform an appropriate coordi-
nate transformation, and to apply the invariant limits as defined in the frame
theory. The computations are straightforward and lead to

ds2 =

[
1 − 2GM

c2R
+

2GQ

c2R3
P2(cos Θ) +

2G2MQ

c4R4
P2(cos Θ)

]
c2dt2

+
4GJ

c2R
sin2 Θdtdφ −

[
1 +

2GM

c2R
− 2GQ

c2R3
P2(cos Θ)

]
dR2

−
[

1 − 2GQ

c2R3
P2(cos Θ)

]
R2(dΘ2 + sin2 Θdφ2) . (8.1.12)

This metric describes the gravitational field for a wide range of compact ob-
jects, and only in the case of very dense (GM ∼ c2

R) or very rapidly rotating
(GJ ∼ c3R2) objects large discrepancies will appear.

If a compact object is rotating slowly, the calculation of its equilibrium
properties reduces drastically because it can be considered as a linear per-
turbation of an already-known non-rotating configuration. This is the main
idea of Hartle’s formalism [138]. To simplify the computation the following
conditions are assumed to be satisfied.
1) There exist an one-parameter equation of state. The matter in equilibrium
configuration is assumed to satisfy a one-parameter equation of state, P =
P(E), where P is the pressure and E is the density of total mass-energy.
2) Axial and reflection symmetry. The configuration is symmetric with re-
spect to an arbitrary axis which can be taken as the rotation axis. Further-
more, the rotating object should be invariant with respect to reflections about
a plane perpendicular to the axis of rotation
3) Uniform rotation. Only uniformly rotating configurations were consid-
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8.2 Fock’s approximate method

ered. It was shown previously that configurations which minimize the total
mass-energy (e.g., all stable configurations) must rotate uniformly [143].
4) Slow rotation. It means that angular velocities Ω are small enough so that
the fractional changes in pressure, energy density and gravitational field due
to the rotation are all less than unity, i.e.

Ω2 ≪
( c

R

)2 GM

c2R
(8.1.13)

where M is the mass and R is the radius of the non-rotating configuration.
The above condition is equivalent to the physical requirement Ω ≪ c/R.

Under the above assumptions, the line element for the interior solution is
given by

ds2 =

(
1 +

2Φ

c2

)
c2dt2 −

[
1 +

2R

c2

dΦ0(R)

dR
+ Φ2(R)P2(cos Θ)

]
dR2

−R2

[
1 +

2Φ2(R)

c2
P2(cos Θ)

]
(dΘ2 + sin2 Θdφ2), (8.1.14)

where
Φ = Φ0(R) + Φ2(R)P2(cos Θ), (8.1.15)

is the interior Newtonian potential, Φ0 is the interior Newtonian potential for
the non-rotating configuration, Φ2 is the perturbation due to the rotation, and
P2(cos Θ) is the Legendre polynomial of first kind [138]. The interior solution
(8.1.14) satisfies Einstein field equations

Rν
µ − 1

2
δν

µR =
8πG

c4
Tν

µ (8.1.16)

where the stress-energy tensor is that of a perfect fluid

Tν
µ = (E+ P)uνuµ + Pδν

µ. (8.1.17)

The 4-velocity which satisfies the normalization condition uµuµ = 1 is

uR = uΘ = 0, uφ = Ωut, ut =
(

gtt + 2Ωgtφ + Ω2gφφ

)−1/2
, (8.1.18)

where the angular velocity Ω is a constant throughout the fluid.

8.2 Fock’s approximate method

Fock’s first-order approximation metric was recently derived and investi-
gated by Abdildin [147]. Initially this metric was written in its original form
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8 On the search for interior solutions

in harmonic coordinate system [148, 149] as follows

ds2 =

[
c2 − 2U +

2U2

c2
− 2G

c2

∫
ρ′
(

3
2v2 + Π − U

)′ − P′
kk

|~r −~r′|
(
dx′
)3

]
dt2−

−
[

1 +
2U

c2

] (
dx1

2 + dx2
2 + dx3

2
)
+

8

c2
(U1dx1 + U2dx2 + U3dx3) dt,

(8.2.1)

where U is the Newtonian gravitational potential, ρ is the mass density of
the body, v is the speed of the particles inside the body (liquid), Π is the

elastic energy per unit mass, Pik is the stress tensor, ~U is the gravitational
vector potential. Newton’s potential satisfies the equation ∆U = 4πGρ. The
solution of this equation which satisfies the asymptotically flatness condition
at infinity can be written in the form of a volume integral:

U = −G
∫

ρ′

|~r −~r′|
dx′dy′dz′ . (8.2.2)

Furthermore, the vector potential must satisfy the equation ∆Ui = 4πGρvi

whose general asymptotically flat solution can be represented as

Ui = −G
∫

(ρvi)
′

|~r −~r′|
dx′dy′dz′. (8.2.3)

In order to completely determine the metric, it is necessary to calculate the
above integrals. Clearly, the result will depend on the internal structure of
the body which is determined by the density ρ′ and velocity v′i distributions.
Once these functions are given, the calculation of the integrals can be per-
formed in accordance with the detailed formalism developed by Fock [141]
and then extended and continued by Abdildin [142] and Brumberg [150]. In-
troducing spherical coordinates, the resulting metric can be written as

ds2 =

[
c2 − 2GM

r
− κ

GS2
0

c2Mr3

(
1 − 3 cos2 θ

)]
dt2 −

(
1 +

2GM

c2r

)
dr2

−r2
(

dθ2 + sin2 θdφ2
)
+

4GS0

c2r
sin2 θdφdt , (8.2.4)

where S0 is the angular momentum of the body, M is the total (effective)
mass. Here we added the constant κ and verified that in fact the above met-
ric is an approximate solution for any arbitrary real value of κ. This simple
observation allows us to interpret Fock’s procedure as a method to find out
how the internal structure of the object influences the values of the external
parameters. For instance, the total mass in the above metric is M but it can
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8.3 Matching with the Kerr solution

decomposed as

M = m +
ξ

c2
, (8.2.5)

where m is the rest mass of the body, and ξ is an arbitrary real constant which,
as the constant κ, depends on the internal properties of the body. In particular,
the cases of a liquid and a solid sphere have been analyzed in detail with the
result

ξ =

{
8
3 T + 2

3 ε, for a liquid sphere,

4T + 2
3ε, for a solid sphere,

κ =

{
4
7 , for a liquid sphere,
15
28 , for a solid sphere.

(8.2.6)
where T is the rotational kinetic energy of the body and ε is the energy of
mutual gravitational attraction of the particles inside the body. In the case
of a static configuration (S0 = 0), the extended metric (8.2.4) reduces to the
approximate Schwarzschild metric, where M is the total mass expressed in
terms of the internal parameters of the body as given in Eqs.(8.2.5) and (8.2.6).
Notice that in this case the field does not depend on the constant κ.

In the general case (S0 6= 0), the angular momentum of the source gener-
ates a gravitational field which, to second order of accuracy in S0, depends
on the constant κ. This opens the possibility of determining the value of κ by
measuring the effects of the gravitomagnetic exterior field on test particles.
For planet-like compact objects this effect is quite small. Nevertheless, in the
case of test particles in the field of more dense sources it should be possible
to perform measurements and determine the value of the parameter κ.

8.3 Matching with the Kerr solution

The Kerr metric [135] in Boyer-Lindquist coordinates [152, 150] can be written
as

ds2 =

(
1 − 2µ̺

̺2 + a2 cos2 ϑ

)
c2dt2 − ̺2 + a2 cos2 ϑ

̺2 − 2µ̺ + a2
d̺2 −

(
̺2 + a2cos2 ϑ

)
dϑ2−

−
(

̺2 + a2 +
2µ̺a2 sin2 ϑ

̺2 + a2 cos2 ϑ

)
sin2 ϑdφ2 − 4µ̺a sin2 ϑ

̺2 + a2 cos2 ϑ
cdtdφ

(8.3.1)

where

µ =
GM

c2
, a = − S0

Mc
(8.3.2)
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8 On the search for interior solutions

Expanding this metric to the order 1
c2 , one obtains

ds2 =

[
c2 − 2GM

̺
+

2GMa2

̺3
cos2 ϑ

]
dt2 −

(
1 +

2GM

̺c2
− a2

̺2
sin2 ϑ

)
d̺2−

−̺2

(
1 +

a2

̺2
cos2 ϑ

)
dϑ2 − ̺2

(
1 +

a2

̺2

)
sin2 ϑdφ2 − 4GMa

̺c
sin2 ϑdφdt .

(8.3.3)

Furthermore, if we introduce new coordinates ̺ = ̺(r, θ), ϑ = ϑ(r, θ) by
means of the equations

̺ = r − a2 sin2 θ

2r
, ϑ = θ − a2 sin θ cos θ

2r2
, (8.3.4)

then the Kerr metric (8.3.3) can be reduced to the following form

ds2 =

[
c2 − 2

GM

r
− GS2

0

c2Mr3

(
1 − 3 cos2 θ

)]
dt2 −

(
1 +

2GM

c2r

)
dr2

−r2
(

dθ2 + sin2 θdφ2
)
+

4GS0

c2r
sin2 θdφdt , (8.3.5)

which coincides with the metric (8.2.4) with κ = 1. Consequently, the ex-
tended Fock metric (8.2.4) can be interpreted as describing the exterior field
of a rotating body to second order in the angular velocity. The advantage
of using Fock’s method to derive this approximate solution is that it allows
to determine the arbitrary constant κ. In fact, whereas κ = κL = 4/7 for a
liquid sphere and κ = κS = 15/28 for a solid sphere, the value for the Kerr
metric κ = κK = 1 does not seem to correspond to a concrete internal model.
On the other hand, all the attempts to find a physically meaningful interior
Kerr solution have been unsuccessful. Perhaps the relationship with Fock’s
formalism we have established here could shed some light into the structure
of the interior counterpart of the Kerr metric.

Furthermore, the coordinate transformation [139]

r = R− a2

2R

[(
1 +

2GM

c2R

)(
1 − GM

R

)
+ cos2 Θ

(
1 − 2GM

c2R

)(
1 +

3GM

c2R

)]
,

(8.3.6)

θ = Θ − a2

2R2

(
1 +

2GM

c2R

)
cos Θ sin Θ , (8.3.7)

transforms the approximate Kerr solution into the HT solution (8.1.8) with
J = −µa and a particular quadrupole parameter Q = J2/µ.

In this way, we have shown that the extended Fock metric coincides for
κ = 1 with the approximate Kerr solution which, in turn, is equivalent to
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8.4 The exact Quevedo-Mashhoon metric

the exterior HT solution with a particular value of the quadrupole parameter.
The fact that in the Kerr solution the quadrupole moment is completely spec-
ified by the angular momentum is an indication that it can be applied only
to describe the gravitational field of a particular class of compact objects. A
physically meaningful generalization of the Kerr solution should include a
set or arbitrary multipole moments which are not completely determined by
the angular momentum. In the next section we present a particular exact
solution characterized by an arbitrary quadrupole moment.

8.4 The exact Quevedo-Mashhoon metric

In this section we study the general metric describing the gravitational field of
a rotating deformed mass found by Quevedo and Mashhoon [8, 136], which
is a stationary axisymmetric solution of the vacuum Einstein’s equations be-
longing to the class of Weyl-Lewis-Papapetrou [4, 5, 6]. For the sake of sim-
plicity we consider here a particular solution involving only four parameters:
the mass parameter M, the angular momentum parameter a, the quadrupole
parameter q, and the additional Zipoy-Voorhees [153, 154] constant δ. For
brevity, in this section we use geometric units with G = c = 1. The cor-
responding line element in spheroidal coordinates (t, r, θ, φ) with r ≥ σ +
M0, 0 ≤ θ ≤ π

2 is given by

ds2 = f (dt − ωdφ)2−
σ2

f

{
e2γ

(
dθ2 +

dr2

M2
0 − 2M0r + r2 − σ2

)(
(M0 − r)2

σ2
− cos2 θ

)

+

(
(M0 − r)2

σ2
− 1

)
sin2 θdφ2

}
,

(8.4.1)

where f , ω and γ are functions of r and θ only, and σ is a constant. They have
the form [x = (r − M0)/σ, y = cos θ]

f =
R

L
e−2qδP2Q2 , (8.4.2)

ω = −2a − 2σ
M

R
e2qδP2Q2 , (8.4.3)

e2γ =
1

4

(
1 +

M

σ

)2 R

(x2 − 1)δ
e2δ2γ̂, (8.4.4)

where
R = a+a− + b+b− , L = a2

+ + b2
+, (8.4.5)
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M = (x + 1)δ−1
[

x(1 − y2)(λ + η)a+ + y(x2 − 1)(1 − λη)b+
]

, (8.4.6)

γ̂ =
1

2
(1 + q)2 ln

x2 − 1

x2 − y2
+ 2q(1 − P2)Q1 + q2(1 − P2)[(1 + P2)(Q

2
1 − Q2

2)

+
1

2
(x2 − 1)(2Q2

2 − 3xQ1Q2 + 3Q0Q2 − Q′
2)].

(8.4.7)

Furthermore

a± = (x ± 1)δ−1[x(1 − λη)± (1 + λη)], (8.4.8)

b± = (x ± 1)δ−1[y(λ + η)∓ (λ − η)], (8.4.9)

with
λ = α(x2 − 1)δ−1(x + y)2δ−2e2qδδ+ , (8.4.10)

η = α(x2 − 1)δ−1(x − y)2δ−2e2qδδ− , (8.4.11)

δ± =
1

2
ln

(x ± y)2

x2 − 1
+

3

2
(1 − y2 ∓ xy) +

3

4
[x(1 − y2)∓ y(x2 − 1)] ln

x − 1

x + 1
,

(8.4.12)
the quantity α is a constant.

To establish the relationship with the HT solution it is convenient to choose
the Zipoy-Voorhees parameter as δ = 1+ sq, where s is a real constant. Then,
expanding the metric (8.4.1) to first order in the quadrupole parameter q and
to second order in the rotation parameter a, we obtain

f = 1 − 2M

r
+

2a2M cos2 θ

r3
+ q(1 + s)

(
1 − 2M

r

)
ln

(
1 − 2M

r

)

+3q
( r

2M
− 1
)
×
[ (

1 − M

r

)(
3 cos2 θ − 1

)
+

{( r

2M
− 1
)
(3 cos2 θ − 1)

−M

r
sin2 θ

}
ln

(
1 − 2M

r

)]
,

(8.4.13)

ω =
2aMr sin2 θ

r − 2M
, (8.4.14)

γ =
1

2
ln

r(r − 2M)

(r − M)2 − M2 cos2 θ
+

a2

2

[
M2 cos2 θ sin2 θ

r(r − 2M)((r − M)2 − M2 cos2 θ)

]

+ q(1+ s) ln
r(r − 2M)

(r − M)2 − M2 cos2 θ
− 3q

[
1 +

1

2

( r

M
− 1
)

ln

(
1 − 2M

r

)]
sin2 θ.

(8.4.15)
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The further simplification s = −1, and the coordinate transformation [20]

r = R +Mq +
3

2
Mq sin2 Θ

[
R

M
− 1 +

R2

2M2

(
1 − 2M

R

)
ln

(
1 − 2M

R

)]
−

− a2

2R

[(
1 +

2M

R

)(
1 − M

R

)
− cos2 Θ

(
1 − 2M

R

)(
1 +

3M

R

)]
(8.4.16)

θ = Θ − sin Θ cos Θ

{
3

2
q

[
2 +

(
R

M
− 1

)
ln

(
1 − 2M

R

)]
+

a2

2R

(
1 +

2M

R

)}

(8.4.17)
transforms the approximate QM solution (8.4.13)–(8.4.15) into the HT solu-
tion (8.1.8) with parameters

M = M(1 − q), J = −Ma, Q =
J2

M
− 4

5
M3q . (8.4.18)

Introducing units with G 6= 1 and c 6= 1, in a similar manner, it is also possi-
ble to show that choosing δ = 1 − q, and expanding the approximate metric
(8.4.13)–(8.4.14) in powers of 1/c2, the resulting solution can be made to co-
incide with Fox’s extended solution (8.2.4). In other words, the parameter κ
turns out to be related with the Zipoy-Voorhees parameter δ.

We presented the main exact and approximate solutions of Einstein’s equa-
tions which can be used to describe the interior and exterior field of astro-
physical compact objects. We found that a particular QM solution, which
in general possesses an infinite set of gravitational and electromagnetic mul-
tipole moments, contains the exact Kerr metric, as well as the approximate
HT and the extended Fock solutions. Moreover, since the HT solution is en-
dowed with its interior counterpart, we conclude that the approximate QM
solution (to the second order in the angular momentum and to the first order
in the quadrupole parameter) can be matched with the interior HT solution,
indicating that it can be used to correctly describe the gravitational field of
astrophysical compact objects.

We found that Fock’s formalism can be used to construct models for the
inner structure of compact objects from which it is possible to determine the
parameters of the exterior approximate solution in terms of the inner parame-
ters. A particular parameter which enters the extended Fock metric turns out
to have very specific values in the case of a liquid sphere and a solid sphere.
In the case of approximate Kerr metric, this parameter does not seem to cor-
respond to any known interior model analyzed in the framework of Fock’s
formalism. This opens the possibility of attacking the problem of finding the
interior counterpart of the exterior Kerr metric by using Fock’s method. We
expect to investigate this possibility in the near future.
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9 Matching with an interior
solution

Rather few exact stationary solutions that involve a matter distribution in ro-
tation are to be found in the literature. In particular, the interior solution for
the rotating Kerr solution is still unknown. In fact, the quest for a realistic
exact solution, representing both the interior and exterior gravitational field
generated by a self-gravitating axisymmetric distribution of a perfect fluid
mass in stationary rotation is considered as a major problem in general rel-
ativity. We believe that the inclusion of a quadrupole in the exterior and in
the interior solutions adds a new physical degree of freedom that could be
used to search for realistic interior solutions. We will study in this section
the entire Riemannian manifold corresponding to the simple case of a static
exterior solution with only quadrupole moment.

The simplest generalization of the Schwarzschild spacetime which includes
a quadrupole parameter can be obtained from the Zipoy–Voorhees solution
with δ = 1 − q. The corresponding line element in spherical-like coordinates
can be represented as

ds2 =

(
1 − 2m

r

)1−q

dt2 −
(

1 − 2m

r

)q

(9.0.1)

×
(

1 − 2m

r

)q


(

1 +
m2 sin2 θ

r2 − 2mr

)q(2−q)(
dr2

1 − 2m
r

+ r2dθ2

)
+ r2 sin2 θdϕ2


 .

This solution is axially symmetric and reduces to the spherically symmetric
Schwarzschild metric in the limit q → 0. It is asymptotically flat for any
finite values of the parameters m and q. Moreover, in the limiting case m →
0 it can be shown that the metric is flat. This means that, independently
of the value of q, there exists a coordinate transformation that transforms
the resulting metric into the Minkowski solution. From a physical point of
view this is an important property because it means that the parameter q is
related to a genuine mass distribution, i.e., there is no quadrupole moment
without mass. To see this explicitly, we calculate the multipole moments of
the solution by using the invariant definition proposed by Geroch [18]. The
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9 Matching with an interior solution

lowest mass multipole moments Mn, n = 0, 1, . . . are given by

M0 = (1 − q)m , M2 =
m3

3
q(1 − q)(2 − q) , (9.0.2)

whereas higher moments are proportional to mq and can be completely rewrit-
ten in terms of M0 and M2. This means that the arbitrary parameters m and
q determine the mass and quadrupole which are the only independent mul-
tipole moments of the solution. In the limiting case q = 0 only the monopole
M0 = m survives, as in the Schwarzschild spacetime. In the limit m = 0,
with q 6= 0, all moments vanish identically, implying that no mass distribu-
tion is present and the spacetime must be flat. This is in accordance with
the result mentioned above for the metric (9.0.2). Furthermore, notice that all
odd multipole moments are zero because the solution possesses an additional
reflection symmetry with respect to the equatorial plane.

We conclude that the above metric describes the exterior gravitational field
of a static deformed mass. The deformation is described by the quadrupole
moment M2 which is positive for a prolate mass distribution and negative for
an oblate one. Notice that in order to avoid the appearance of a negative total
mass M0 the condition q < 1 must be satisfied .

9.0.1 Matching conditions

In this subsection we analyze several approaches which could be used to de-
termine the matching hypersurface Σ. Instead of presenting a rigorous anal-
ysis, we will present an intuitive method based on the behavior of the curva-
ture and the motion of test particles.

To investigate the structure of possible curvature singularities, we consider
the Kretschmann scalar K = RµνλτRµνλτ. A straightforward computation
leads to

K =
16m2(1 − q)2

r4(2−2q+q2)

(r2 − 2mr + m2 sin2 θ)2q2−4q−1

(1 − 2m/r)2(q2−q+1)
L(r, θ) , (9.0.3)

with

L(r, θ) = 3(r − 2m + qm)2(r2 − 2mr + m2 sin2 θ)

−q(2 − q) sin2 θ[q2 − 2q + 3(r − m)(r − 2m + qm)] . (9.0.4)

In the limiting case q = 0, we obtain the Schwarzschild value K = 48m2/r6

with the only singularity situated at the origin of coordinates r → 0. In gen-
eral, one can show that the singularity at the origin, r = 0, is present for any
values of q. Moreover, an additional singularity appears at the radius r = 2m
which, according to the metric (9.0.2), is also a horizon in the sense that the
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norm of the timelike Killing tensor vanishes at that radius. Outside the hyper-
surface r = 2m no additional horizon exists, indicating that the singularities
situated at the origin and at r = 2m are naked. Moreover, for values of the
quadrupole parameter within the interval

q ∈
(

1 −
√

3/2, 1+
√

3/2
)
\{0} (9.0.5)

a singular hypersurface appears at a distance

r± = m(1 ± cos θ) (9.0.6)

from the origin of coordinates. This type of singularity is always contained
within the naked singularity situated at the radius r = 2m, and is related
to a negative total mass M0 for q > 1. Nevertheless, in the interval q ∈
(1−

√
3/2, 1]\{0} the singularity is generated by a more realistic source with

positive mass.
The analysis of singularities is important to determine the matching hy-

persurface Σ. Indeed, in the case under consideration it is clear that Σ cannot
be situated inside the sphere defined by the radius r = 2m. To eliminate all
the singularities it is necessary to match the above solution (9.0.2) with an
interior solution which covers completely the naked hypersurface r = 2m.

Another important aspect related to the presence of naked singularities is
the problem of repulsive gravity. In fact, it now seems to be established that
naked singularities can appear as the result of a realistic gravitational collapse
[155] and that naked singularities can generate repulsive gravity. Currently,
there is no invariant definition of repulsive gravity in the context of general
relativity, although some attempts have been made by using invariant quanti-
ties constructed with the curvature of spacetime [156, 157, 158]. Nevertheless,
it is possible to consider an intuitive approach by using the fact that the mo-
tion of test particles in stationary axisymmetric gravitational fields reduces
to the motion in an effective potential. This is a consequence of the fact that
the geodesic equations possess two first integrals associated with stationarity
and axial symmetry. The explicit form of the effective potential depends also
on the type of motion under consideration.

In the case of a massive test particle moving along a geodesic contained in
the equatorial plane (θ = π/2) of the Zipoy–Voorhees spacetime (9.0.2), one
can show that the effective potential reduces to

V2
e f f =

(
1 − 2m

r

)1−q
[

1 +
L2

r2

(
1 − 2m

r

)−q
]

, (9.0.7)

where L is constant associated to the angular momentum of the test particle
as measured by a static observer at rest at infinity. This expression shows that
the behavior of the effective potential strongly depends on the value of the
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9 Matching with an interior solution

Figure 9.1: The effective potential for the motion of timelike particles. Plot (a)
shows the typical behavior of the effective potential of a black hole configu-
ration with q = 0. The case of a naked singularity with q = 1/2 is depicted
in plot (b).

quadrupole parameter q. This behavior is illustrated in Fig. 9.1.

Whereas the effective potential of a black corresponds to the typical poten-
tial of an attractive field, the effective potential of a naked singularity is char-
acterized by the presence of a barrier which acts on test particles as a source
of repulsive gravity. Although this result is very intuitive, the disadvantage
of this analysis is that it is not invariant. In fact, a coordinate transforma-
tion can be used to arbitrarily change the position of the barrier of repulsive
gravity. Moreover, the identification of the spatial coordinate r as a radial
coordinate presents certain problems in the case of metrics with quadrupole
moments [159]. To avoid this problem we investigate a set of scalars that can
be constructed from the curvature tensor and are linear in the parameters that
enter the metric, namely, the eigenvalues of the Riemann tensor. Let us recall
that the curvature of the Zipoy–Voorhees metric belongs to type I in Petrov’s
classification. On the other hand, type I metrics possess three different curva-
ture eigenvalues whose real parts are scalars [160]. The explicit calculation of
the curvature eigenvalues for this metric shows [161] that all of them are real
and, consequently, they behave as scalars under arbitrary diffeomorphisms.
The resulting analytic expressions are rather cumbersome. For this reason we
performed a numerical analysis and found out the main differences between
black holes and naked singularities. The results are illustrated in Fig. 9.2.

We took a particular eigenvalue which represents the qualitative behavior
of all the eigenvalues. In the case of a black hole, the eigenvalue diverges near
the origin of coordinates, where the curvature singularity is situated, and it
decreases rapidly as r increases, tending to zero at spatial infinity. In the case
of a naked singularity the situation changes drastically. The eigenvalue van-
ishes at spatial infinity and then increases as the value of the radial coordinate
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Figure 9.2: Behavior of the curvature eigenvalue on the equatorial plane
(θ = π/2) of the Zipoy-Voorhees metric. Plot (a) corresponds to a black
hole solution with q = 0. Plot (b) illustrates the behavior in case of a naked
singularity with q = −2.

decreases. At a specific radius r = rmin, the eigenvalue reaches a local max-
imum and then rapidly decreases until it vanishes. This oscillatory behavior
becomes more frequent as the origin of coordinates is approached. It seems
plausible to interpret this peculiar behavior as an invariant manifestation of
the presence of repulsive gravity. On the other hand, if one would like to
avoid the effects of repulsive gravity, one would propose rmin as the mini-
mum radius where the matching with an interior solution should be carried
out. If we denote the eigenvalue as λ, then rmin can be defined invariantly by
means of the equation

∂λ

∂r

∣∣∣∣
r=rmin

= 0 . (9.0.8)

Then, the radius rmin determines the matching hypersurface Σ and one could
interpret condition (9.0.8) as a C3−matching condition. In concrete cases, one
must calculate all possible eigenvalues λi and all possible points satisfying
the matching condition ∂λi/∂r = 0. The radius rmin corresponds then to the
first extremum that can be found when approaching the origin of coordinates
from infinity. In the next section we will show that this approach can be
successfully carried out in the case of the Zipoy–Voorhees metric.

9.0.2 An interior solution

In the search for an interior solution that could be matched to the exterior
solution with quadrupole moment given in Eq.(9.0.2), we found that an ap-
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propriate form of the line element can be written as

ds2 = f dt2 − e2γ0

f

(
dr2

h
+ dθ2

)
− µ2

f
dϕ2 , (9.0.9)

where
e2γ0 = (r2 − 2mr + m2 cos2 θ)e2γ(r,θ) , (9.0.10)

and f = f (r, θ), h = h(r), and µ = µ(r, θ). This line element preserves axial
symmetry and staticity.

The inner structure of the mass distribution with a quadrupole moment
can be described by a perfect fluid energy–momentum tensor. In general, in
order to solve Einstein’s equations completely, pressure and energy must be
functions of the coordinates r and θ. However, if we assume that ρ = const,
the resulting system of differential equations is still compatible. The assump-
tion of constant density drastically reduces the complexity of the problem.
Then, the corresponding field equations reduce to

pr = −1

2
(p + ρ)

fr

f
, pθ = −1

2
(p + ρ)

fθ

f
, (9.0.11)

µrr = − 1

2h

(
2µθθ + hrµr − 32πp

µe2γ0

f

)
, (9.0.12)

frr =
f 2
r

f
−
(

hr

2h
+

µr

µ

)
fr +

f 2
θ

h f
− µθ fθ

µh
− fθθ

h
+ 8π

(3p + ρ)e2γ0

h
. (9.0.13)

Moreover, the function γ turns out to be determined by a set of two partial
differential equations which can be integrated by quadratures once f and µ
are known. The integrability condition of these partial differential equations
turns out to be satisfied identically by virtue of the remaining field equations.

Although we have imposed several physical conditions which simplify the
form of the field equations, we were unable to find analytic solutions. How-
ever, it is possible to perform a numerical integration by imposing appropri-
ate initial conditions. In particular, we demand that the metric functions and
the pressure are finite at the axis. Then, it is possible to plot all the metric
functions and thermodynamic variables. In particular, the pressure behaves
as shown in Fig.9.3.

It can be seen that the pressure is finite in the entire interior domain, and
tends to zero at certain hypersurface R(r, θ) which depends on the initial
value of the pressure on the axis. Incidentally, it turns out that by increas-
ing the value of the pressure on the axis, the “radius fuction” R(r, θ) can be
reduced. Furthermore, if we demand that the hypersurface R(r, θ) coincides
with the origin of coordinates, the value of the pressure at that point diverges.
From a physical point of view, this is exactly the behavior that is expected
from a physically meaningful pressure function.
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Figure 9.3: Plot of the inner pressure as a function of the spatial coordinates.

This solution can be used to calculate numerically the corresponding Rie-
mann tensor and its eigenvalues. As a result we obtain that the solution is
free of singularities in the entire region contained within the radius function
R(r, θ). In particular, one of the eigenvalues presents on the equatorial plane
the behavior depicted in Fig.9.4. All the eigenvalues have a finite value at the
symmetry axis and decrease as the boundary surface is approached.

To apply the C3−matching procedure proposed above we compare the be-
havior of the eigenvalue plotted in Fig.9.2 with the corresponding eigenvalue
plotted in Fig.9.4, using the same scale in both graphics. The result is illus-
trated in Fig.9.5. It then becomes clear that the first possible point where the
matching can be performed is exactly at rmin which in this particular case cor-
responds to rmin ≈ 5M0. This fixes the initial value of the pressure on the axis
which is then used to attack the problem of matching the interior and exte-
rior metric functions. In all the cases we analyzed, we obtained a reasonable
matching, withing the accuracy of the numerical calculations. We repeated
the same procedure for different values of the angular coordinate (θ = π/4
and θ = 0), and obtained that the matching can always be reached by fixing in
an appropriate manner the arbitrary constants that enter the metric functions
f and µ.
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9 Matching with an interior solution

Figure 9.4: Behavior of the curvature eigenvalue on the equatorial plane (θ =
π/2) of the interior solution.

Figure 9.5: Curvature eigenvalues of the interior solution and of the exterior
solution with the same scale.
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9.1 Concluding remarks

We presented an exact electrovacuum solution of Einstein-Maxwell equations
which contains four different sets of multipole moments. An invariant calcu-
lation shows that they can be interpreted as the gravitoelectric, gravitomag-
netic, electric and magnetic multipole moments. The solution is asymptoti-
cally flat and is free of singularities in a region situated around the origin of
coordinates. The rotating Kerr metric is contained as a special case. The NUT
parameter can also be included by a suitable choice of the arbitrary constants
which enter the Ernst potentials. We conclude that this solution can be used
to describe the exterior gravitational field a charged rotating mass distribu-
tion.

In the particular case of slowly rotating and slightly deformed mass dis-
tribution we obtained the explicit form of the metric, and showed that it can
be matched with an interior solution which is contained within the class of
Hartle-Thorne solutions. This reinforces the conclusion that the solution rep-
resents the interior as well as the exterior gravitational field of astrophysical
compact objects.

We studied the problem of matching the interior and exterior spacetimes.
We propose a C3−matching which consists in demanding that the derivatives
of a particular curvature eigenvalue are smooth on the matching hypersur-
face. To prove the validity of this approach we derived an interior solution
for the simplest case of a static mass with an arbitrary quadrupole moment,
represented by the Zipoy–Voorhees vacuum solution. The numerical inte-
gration of the corresponding field equations shows that interior perfect fluid
solutions exist which are characterized by a constant density profile with a
variable pressure. Fixing the value of the angular coordinate θ, we performed
numerically the C3−matching. As a result we obtain a minimum radius at
which the matching can be carried out and a fixed value for the pressure on
the symmetry axis. These values are then used to reach the smooth matching
of the interior and exterior metric functions. In all the cases analyzed in this
manner we obtained a reasonable numerical matching.

The idea of using the C3−matching condition to determine the minimum
radius, at which an interior solution can be matched with an exterior one,
has been proved also in a particular case where analytical methods can be
applied, namely, in the case of the Kerr-Newman class of solutions. The
obtained results are reasonable and compatible with other results obtained
by analyzing the motion of test particles [162]. These results indicate that
it should be possible to determine the minimum radius of an astrophysical
compact object by using the idea of the C3−matching presented here. To
prove this conjecture in general, it will be necessary to use more powerful
methods related to the mathematical behavior of geodesics and curvature.
This problem is currently under investigation [163]. An important applica-
tion of this analysis would be to relate the minimum size of a compact object
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with its binding energy. As a result we would obtain the maximum binding
energy which is physically allowed for an astrophysical compact object.
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